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1. Studies and consortia for blood pressure analysis 
Most of the studies contributing to the ICBP-GWAS were general population samples, and 
were recruited for classical or genetic epidemiological purposes, as described below.  In 
addition to these population-based samples, we also included data from birth cohorts including 
a sampling of individuals born in a given year, single-sex samples, probands from a sample of 
twins, individuals in particular professions (civil service workers in the UK, female health 
professionals in the US), and controls from case-control studies of diabetes and myocardial 
infarction.  In selecting studies for inclusion in ICBP-GWAS we sought to achieve a 
compromise that would maximize sample size, while minimizing potential heterogeneity of 
genetic effect sizes.  In particular, cohorts of diabetic cases, hypertensive cases, MI cases, and 
cohorts with prevalent psychiatric disorders were not included for the GWAS discovery 
analysis (“Phase 0”).  For replication analyses, most studies were population samples. 
All participants provided written informed consent and studies were approved by their local 
Research Ethics Committees and/or Institutional Review Boards.  Blood pressure, height, and 
weight were directly measured in all participants, except for the Women’s Genome Health 
Study as described in Section 1.79 below.  Sex and age were also recorded for all individuals.  
Summary demographic characteristics for studies in Europeans are listed in Supplementary 
Table 1, and for Non-Europeans in Supplementary Table 11.  Additional descriptions of 
ascertainment methods for each participating study are given in Sections 1.1-1.82 below. 

All studies with GWAS data performed genotyping using commercially available arrays with 
>300,000 SNPs.  As described in Supplementary Table 2, in each study quality-control 
procedures excluded individual problematic samples and SNPs, using criteria such as excessive 
rates of genotyping error, a large proportion of missing genotypes, or marked deviations from 
Hardy-Weinberg equilibrium.  All studies with GWAS data used hidden Markov model 
approaches1-3 and HapMap reference panels4 to impute genotypes at unmeasured SNPs and 
excluded SNPs, so that a common set of ~2.5M HapMap SNPs were available across the 
discovery samples5,6. 

Studies that performed genotyping of specific SNPs identified from our GWAS meta-analyses 
used a variety of assays. Five studies (YFS, EPIC-TURIN, FLEMENGHO, Nigerians, and 
JMGP) were genotyped using Taqman assays (Applied Biosystems, USA).  Twelve studies 
(ARYA, ELSA, PREVEND, Prospect-EPIC, WHII, BRHS, BWHHS, GRAPHIC, 
INTERGENE, MRC NSHD, YMCA, and COBRA) were genotyped at KBiosciences using the 
KASPAr assay. Four studies (HYPEST, BRIGHT, EAS and NPHS-II) were genotyped using 
the KASPAr assay at Barts and The London Genome Centre.  Fourteen cohorts (DiaGen, 
HUNT2, FINRISK97, FUSION2, METSIM, CLUE, MDC, MPP, FBPP-HyperGen, 
FBPP-GenNet, Jamaicans-GXE, Jamaicans-SPT, CCMB cohorts and IRAS) were genotyped 
using the iPLEX Sequenom MassARRAY platform.  For quality control, data was used only 
for SNPs in Hardy-Weinberg equilibrium (p>0.001) and with call rate >90%; this excluded 
various SNPs for one or more cohorts, and one SNP (rs7401919) for all cohorts. 

1.1 AGES Reykjavik 
The Age Gene/Environment Susceptibility-Reykjavik Study originally comprised a random 
sample of 30,795 men and women born in 1907-1935 and living in Reykjavik in 1967.  A total 
of 19,381 people attended, resulting in a 71% recruitment rate.  The study sample was divided 
into six groups by birth year and birth date within month. One group was designated for 
longitudinal follow up and was examined in all stages; another was designated as a control 
group and was not included in examinations until 1991.  Other groups were invited to 
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participate in specific stages of the study.  Between 2002 and 2006, the AGES-Reykjavik study 
re-examined 5,764 survivors of the original cohort who had participated before in the 
Reykjavik Study7.  The midlife data blood pressure measurement was taken from stage 3 of the 
Reykjavik Study (1974-1979), if available.  Half of the cohort attended during this period.  
Otherwise an observation was selected closest in time to the stage 3 visit.  The supine blood 
pressure was measured twice by a nurse using a mercury sphygmomanometer after 5 minutes 
rest following World Health Organization recommendations8.  Individuals with previous MI 
were excluded from the analyses (N=12). 

1.2 Amish 
The Old Order Amish individuals included in this study were participants of several ongoing 
studies of cardiovascular health carried out at the University of Maryland9,10.  Participants were 
mostly healthy volunteers and their family members from the Old Order Amish community of 
Lancaster County, PA.  All protocols were approved by the Institutional Review Board at the 
University of Maryland and informed consent was obtained, including permission to use their 
DNA for genetic studies.  Before any intervention, baseline BP was measured using an 
automated Datascope Accutorr Plus machine with the subject in the sitting position after he or 
she had been sitting quietly for 5 minutes, and the average of the last 2 measures was used for 
the analyses.  Hypertension medication was discontinued in most subjects before the start of 
the study. 

1.3 ARIC 
The Atherosclerosis Risk In Communities Study is a population-based prospective cohort 
study of cardiovascular disease sponsored by the National Heart, Lung, and Blood Institute 
(NHLBI).  ARIC included 15,792 individuals aged 45-64 years at baseline (1987-89), chosen 
by probability sampling from four US communities11.  Cohort members completed four clinic 
examinations each spread over about three years, conducted approximately three years apart 
between 1987 and 1998.  The data used in this study are from the first visit in 1987-1989.  A 
detailed study protocol is available on the ARIC study website (http://www.cscc.unc.edu/aric). 
Blood pressure was measured using a standardized Hawksley random-zero mercury column 
sphygmomanometer with participants in a sitting position after a resting period of 5 minutes.  
The size of the cuff was chosen according to the arm circumference.  Three sequential 
recordings for systolic and diastolic blood pressure were obtained; the mean of the last two 
measurements was used in this analysis, discarding the first reading.  Blood pressure lowering 
medication use was recorded from the medication history.  Outliers (>4SD from the mean) 
with respect to the systolic or diastolic blood pressure distribution were excluded from the 
analysis.  For this study the sample was restricted to individuals of European descent by self-
report and principal component analysis using genome-wide genotypes. 

1.4 ARYA 
ARYA is a retrospective birth cohort consisting of 750 unselected young adults born between 
1970 and 1973 in or near the city of Utrecht, the Netherlands12.  Inclusion criteria were having 
birth anthropometric data and having at least one blood pressure measured in adolescence, both 
available from medical records of the Municipal Health Service.  The only exclusion criterion 
was pregnancy at the time of examinations.  Between 1999 and 2001, when participants had 
reached young adulthood, they underwent full cardiovascular disease risk profiling.  Blood 
pressure was measured twice at two separate visits with a mean interval of 20.4 (SD 10.7) 
days.  After 5 minutes rest in the seated position, blood pressure was measured using a semi-
automated device (Dinamap) without replacing the cuff between the two measurements at the 
upper arm.  After a further 5-15 minutes rest, the measurement was repeated.  In the analyses, 
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the mean systolic and mean diastolic blood pressure was calculated as the average of four 
measurements. 

1.5 B58C-T1DGC 
The British 1958 Birth Cohort – Type 1 Diabetes Genetics Consortium is a sample from 
the national population-based sample followed periodically from birth to age 44-45 years 
(http://www.b58cgene.sgul.ac.uk/collection.php) and 2,580 individuals were included in this 
analysis.  Blood pressure was recorded using the Omron 705CP machine three times, seated.  
The average of three readings was used for the analysis. 

1.6 B58C-WTCCC 
The British 1958 Birth Cohort – Wellcome Trust Case Control Consortium is a second 
sample from the national population-based sample followed periodically from birth to age 
44-45 years (http://www.b58cgene.sgul.ac.uk/collection.php); 1,473 individuals were included 
in the analysis and are distinct from individuals included in the B58C-T1DGC cohort.  Blood 
pressure was recorded using the Omron 705CP machine three times, seated.  The average of 
three readings was used for the analysis. 

1.7 BHS 
The Busselton Health Study includes a series of seven cross sectional population health 
surveys of adult residents of the Shire of Busselton in the South-West of Western Australia, 
undertaken between 1966 and 1990.  A cross-sectional community follow-up study in 
1994-1995 included the collection of blood for DNA extraction for all survivors of previous 
surveys.  A total of 4,554 individuals participated in this follow-up.  BP was measured in the 
1994-1995 follow-up study using a standard mercury sphygmomanometer (Baumanometer, 
New York) as described previously13.  The participants were asked to refrain from caffeine for 
12 hours and to not smoke prior to attending the survey.  Three BP readings were recorded on 
the participant’s survey chart to the nearest 2 mmHg and the average of the readings was used 
for the analyses. 

1.8 BLSA 
The Baltimore Longitudinal Study of Ageing is an ongoing prospective study of human 
ageing which started in 195814.  The study recruited volunteers predominantly from 
Washington DC and Baltimore, MD, USA.  Healthy volunteers aged >17 years were recruited; 
only European-origin individuals were included in the analysis, there were no other exclusion 
criteria.  Blood pressure was measured using a mercury sphygmomanometer in the seated 
position; the average of the 2nd and 3rd readings were recorded for both the right and left arm 
and used for the analyses. 

1.9 BRHS 
The British Regional Heart Study is a study comprising 7,753 men aged 40-59, who were 
recruited from general practices across Great Britain from 1978-1980.  A wide range of 
phenotypic measures was taken for established risk markers such as lipids, blood pressure, and 
inflammatory and haemostatic markers.  Most measures were taken both at recruitment and re-
examination in 1998-2000, 20 years after recruitment.  Serum samples were taken at the initial 
examination, and whole blood at the re-examination on 4,252 attendees.  Blood pressure 
readings from the re-examination were used for this analysis.  Blood pressure was measured 
twice in succession on the right arm, with the subject seated and the arm supported, using a 
Dinamap 1846 oscillometric blood pressure recorder.  Over-reading of systolic blood pressure 
by the instrument was corrected in the analysis and readings were adjusted for observer 
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variation within each town.  The mean of the two measurements was used for analysis 
(http://www.ucl.ac.uk/pcph/research-groups-themes/brhs-pub). 

1.10 BWHHS 
British Women’s Heart and Health Study is a study comprising 4,286 women aged 60-79 
years who were randomly selected from 23 British towns between 1999 and 2001.  Of the 4,278 
participants who gave consent for genetic testing, 15 were defined by the examining nurse as 
being non-white and were excluded from further analysis.  Of the remaining 4,263 women, 
3,800 (89%) had DNA available for genotyping.  A Dinamap 1846SX vital signs monitor was 
used to measure blood pressure, mean arterial pressure and heart rate.  Measurements were 
taken twice in succession, using the right arm, with the participant seated and the arm supported 
on a cushion.  Arm circumference was measured and the appropriate cuff size was used.  Since 
the Dinamap 1846X is known to systematically overestimate systolic blood pressure by 8 
mmHg this was subtracted from values before analyses.  Full details of the selection of 
participants and measurements used in the BWHHS can be found at the study website 
(http://www.lshtm.ac.uk/eph/ncde/research/bwhhs). 

1.11 CARe 
The Candidate Gene Association Resource (CARe) Study was initiated by NHLBI in 2006.  
DNA samples and phenotypic information were obtained in individuals of European and 
African ancestry from 9 NHLBI cohorts (the ARIC study, the Coronary Artery Risk 
Development in Young Adults (CARDIA) study, CHS, the Cleveland Family Study (CFS), the 
Cooperative Study of Sickle Cell Disease, the Framingham Heart Study (FHS), the Jackson 
Heart Study (JHS), the Multi-Ethnic Study of Atherosclerosis (MESA), and the Sleep Heart 
Health Study15.  The data used here are from 7,473 African Americans within the CARe study, 
taken from 5 of the cohorts (ARIC, CARDIA, CFS, JHS, MESA). 

1.12 CCMB 
The CCMB study comprises four cohorts (CRISIS, IMS, PMNS and WELGEN) and the 
details of each are described in individual Sections 1.18, 1.40, 1.64, and 1.77. 

1.13 CHS 
The Cardiovascular Health Study is a population-based cohort study of risk factors for 
cardiovascular disease in adults 65 years of age or older conducted across four field centres.  
The original predominantly white cohort of 5,201 persons was recruited in 1989-1990 from 
random samples of the Medicare eligibility lists and an additional 687 African-Americans were 
enrolled in 1992-93 for a total sample of 5,888.  Details of the study design are summarized 
elsewhere16.  A total of 1,908 persons were excluded from the study sample due to prevalent 
coronary heart disease (N=1,195), congestive heart failure (N=86), peripheral vascular disease 
(N=93), valvular heart disease (N=20), stroke (N=166), or transient ischemic attack (N=56).  
Participants with missing BMI (N=10) or BP measurements (N=8) were also excluded.  
Research staff with central training in blood pressure measurement assessed repeated right-arm 
seated systolic and diastolic blood pressure levels at baseline with a Hawksley random-zero 
sphygmomanometer.  Means of the repeated blood pressure measurements from the baseline 
examination from 3,277 CHS subjects of European ancestry were used for the analyses. 

1.14 CLHNS 
The Cebu Longitudinal Health and Nutritional Survey is an ongoing study of a cohort of 
Filipino infants born between 1983 and 1984 and their mothers that has been described 
previously17.   The CLHNS was originally conceptualized as a study of infant feeding patterns 
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within the first two years postpartum, with the idea of studying how infant feeding decisions by 
the household interact with various social, economic, and environmental factors to affect 
health, nutritional, demographic, and economic outcomes. The study was expanded beyond the 
two-year postpartum period to date (latest survey on the mothers was in 2007; on index 
children in 2009) so that more issues related to selected health, demographic, and nutritional 
outcomes could be addressed. Blood pressure was measured while participants were seated and 
rested. This analysis used the mean of three measurements taken using mercury 
sphygmomanometers in 2005. 

1.15 CLUE 
The CLUE study comprises 2 large cohorts of volunteers who donated blood in 1974 and 
1989 (CLUE I & CLUE II) in Washington County, MD, a study funded by the National Cancer 
Institute.  CLUE I (based on the campaign slogan ‘‘Give us a Clue to Cancer and Heart 
Disease’’) consists of 26,147 individuals: CLUE II (Campaign against Cancer and Heart 
Disease) is an expansion of CLUE I and had 32,894 participants, collected in 1989.  
Approximately 30% of adult residents participated in both visits. Active participants have been 
followed up in 1996, 1998, 2000, 2003, and 2007 using questionnaires.  The blood pressure 
measurement procedure differed between 1974 and 1989: In 1974 a nurse took three blood 
pressure measurements with a standard sphygmomanometer and recorded the lowest value; in 
1989 a nurse used a random-zero sphygmomanometer to take three blood pressure 
measurements following a standard procedure and the third measurement was used18.  
Individuals overlapping with the ARIC study were removed.  Clinical data and DNA samples 
from 7,065 subjects from CLUE were used in this study. 

1.16 COBRA 
The Control of Blood Pressure and Risk Attenuation study is a Wellcome Trust funded 
cluster randomised control trial with 2x2 factorial design of BP lowering in Karachi, Pakistan.  
Using multistage cluster sampling techniques, 12 communities were randomly selected from 
middle to low-income areas.  The total number of subjects aged 5 years or above in the study 
clusters was 17,500.  Out of these, one individual in the age groups of 5-14 and 15-39 years 
was randomly selected from each of the households and subjects aged 40 and over were also 
invited for interview and measurements.  COBRA participants completed standardized clinical 
examinations and questionnaires at study baseline and a follow-up visit after median follow-up 
period of two years.  Resting brachial blood pressure was measured with a calibrated 
automated device (Omron HEM-737 Intellisense TM Blood Pressure Monitor) in the sitting 
position after 5 minutes of rest.  Three consecutive readings were obtained 5 minutes apart and 
the last two were used in the analysis.  Research staff was trained in standardized measurement 
techniques with retraining at frequent intervals throughout the duration of the study. Blood 
samples were collected in all subjects aged 40 years and above (N=3,143) and COBRA 
contributed 2,131 subjects to the analysis. 

1.17 CoLaus 
The Cohorte Lausannoise is a population-based study aimed at assessing the prevalence and 
molecular determinants of cardiovascular risk factors in the population of Lausanne, 
Switzerland19.  Participants in the study (4,969) were randomly selected from the population 
register of Lausanne in 2003 (N=56,694, aged 35-75 years).  All individuals were of European 
origin, defined as having both parents and grandparents born in a defined list of European 
countries.  Blood pressure was measured using the Omron HEM-907 machine, in the seated 
position.  Three measures were taken on the left arm; the mean of the last two measures was 
used in the analyses. 
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1.18 CRISIS 
The Coronary Risk of Insulin Sensitivity in Indian Subjects study recruited participants 
from rural, urban slum and urban middle-class locations from Pune, Western India to 
investigate the potential relationship of body fat with measures of insulin resistance and 
secretion, inflammatory markers, and glycaemia.  Extensive phenotype measurements were 
taken for all participating individuals and blood pressure was measured in the supine position 
using an automated machine (UA 767PC; A and D Instruments, Abingdon, Oxford, UK). 

1.19 DGI 
The Diabetes Genetics Initiative (DGI) is a type 2 diabetes (T2D) case-control study of 
Swedish and Finnish individuals matched on age, gender and BMI20.  GWAS data from 1,467 
normoglycemic male and female controls were included in these analyses.  Blood pressure 
traits were the average of two seated measurements using a mercury sphygmomanometer. 

1.20 DiaGen 
The Diabetes GENetic study is a large, prospective study of diabetes pathophysiology and 
genetics that began in 199721.  All participants had intensive metabolic, anthropometric and 
clinical phenotyping assessment and were followed up over many years. Blood pressure was 
measured automatically following the Riva Rocci method twice on both arms each after 30 
minutes resting. 

1.21 EAS 
The Edinburgh Artery Study is an age-stratified random sample of men and women, aged 
55-74 years, which was selected between August 1987 and September 1988 from the age-sex 
registers of ten general practices with a geographical and socio-economical catchment 
population spread throughout the city of Edinburgh, UK.  Subjects were excluded if they were 
unfit to participate (e.g., due to severe mental illness or terminal disease); excluded individuals 
were replaced by other randomly sampled subjects.  Physical examinations were performed by 
specially trained research nurses, using standardised operating procedures.  Systolic and 
diastolic (phase V) blood pressures were recorded in the right arm, after 10 minutes rest in the 
supine position, using a Hawksley random zero sphygmomanometer.  Participants with missing 
SBP or DBP measurements were excluded from analysis.  Overall, 904 participants with valid 
measurements of SBP and DBP were included in this analysis. 

1.22 ELSA 
The English Longitudinal Study of Ageing is a national cohort of participants (48% men) 
aged over 50 years recruited from the Health Surveys for England in 1998, 1999, and 2001. 
Genetic data were collected at wave 2 of the study (2004/5); the phenotype measurements taken 
at wave 2 were used for this study.  Participants were visited in the home, and blood pressure 
measurements were taken using an Omron HEM-907 blood pressure monitor by a nurse.  Three 
measurements in the seated position following 10 minutes of rest were taken.  Heavy physical 
activity, smoking, and alcohol use were avoided for 30 minutes prior to recording the blood 
pressure measurement. 

1.23 EPIC-Norfolk 
The European Prospective Investigation of Cancer is a population-based cohort study of 
25,663 Europid men and women aged 39-79 years recruited in Norfolk, UK between 1993 and 
199722.  2,100 randomly selected control subjects were chosen from a BMI study in which 
genome-wide genotyping data had been obtained.  Blood pressure was measured using the 
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Accutorr oscillometric BP machine; the mean of two readings was taken and used in the 
analysis. 

1.24 EPIC Turin 
The EPIC TURIN study is a longitudinal cohort of 10,603 volunteers, aged 35-64 years at 
baseline, from the Turin area, Italy.  Blood pressure was measured using a mercury 
sphygmomanometer, in seated position, on the left arm.  Full details of this cohort have been 
published previously23. 

1.25 ERF 
The ERF (EUROSPAN) study is a family based study which includes over 3,000 participants 
descending from 22 couples living in the Rucphen region, the Netherlands, in the 19th century.  
All descendants were invited to visit the regional clinical research centre where they were 
examined and a fasting blood sample was drawn.  All participants filled out a questionnaire on 
risk factors.  The participants included in these analyses consisted of the first series of 
participants. 

1.26 EUROSPAN 
The EUROSPAN study consists of 5 cohorts (ERF, MICROS, NSPHS, ORCADES, and VIS), 
which are described in Sections 1.25, 1.55, 1.62, 1.63 and 1.78. 

1.27 FBPP-GenNet 
The Family Blood Pressure Project GenNet study recruited European-American (N=1,497) 
and African-American (N=1,101) participants at two field centers between 1995 and 2003, 
based on a hypertensive proband24.  Non-Hispanic white subjects were recruited from 
Tecumseh, Michigan, and African-American subjects were recruited from Maywood, Illinois. 
Probands were defined as individuals aged 18-50 years with blood pressures in the upper 20th 
to 25th percentile of the age/gender-specific blood pressure distribution.  Once the proband was 
identified, an attempt was made to enroll all siblings and parents of the proband, irrespective of 
their blood pressure or hypertension treatment status.  Blood pressure measurements were 
carried out according to standard procedures in a sitting position after a resting period.  
Subjects were not allowed to smoke or drink coffee before the visit.  The average of two 
manual BP measurements was used as the phenotype.  DNA was available for 1,381 
European-American and 848 African-American participants 
(www.biostat.wustl.edu/fbpp/FBPP.shtml). 

1.28 FBPP-HyperGen 
The Hypertension Genetic Epidemiology Network recruited two types of participants 
(hypertensive sibships and random samples of subjects) in European-American and 
African-American samples24.  Recruitment of the study participants, including the hypertensive 
probands, was carried out at five field centers based largely on ongoing population-based 
studies.   For European-Americans, HyperGEN recruited and characterized a total of 1,142 
hypertensive subjects from 480 sibships, yielding a total of 992 self-reported sib-pairs, and a 
random sample of 472 biologically unrelated participants.  For African-Americans, HyperGEN 
recruited and characterized a total of 1,261 hypertensive subjects from 596 sib-ships yielding a 
total of 826 self-reported sib-pairs, and a random sample of 446 biologically unrelated African 
Americans (www.biostat.wustl.edu/fbpp/FBPP.shtml). Blood pressure measurements were 
carried out according to standard procedures in a sitting position after a resting period. 
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1.29 Fenland 
The Fenland Study is an ongoing population-based cohort study (started in 2005) designed to 
investigate the association between genetic and lifestyle environmental factors and the risk of 
obesity, insulin sensitivity, hyperglycemia, and related metabolic traits in men and women 
aged 30 to 55 years.  Potential volunteers were recruited from general practice sampling frames 
in the Fenland, Ely, and Cambridge areas of the Cambridgeshire Primary Care Trust in the UK.  
Exclusion criteria for the study were: prevalent diabetes, pregnant and lactating women, 
inability to participate including terminal illness, psychotic illness, or inability to walk unaided. 
Currently, the study comprises more than 3,000 participants of whom the first 1,500 volunteers 
with complete anthropometric data were genotyped and included in the current analyses.  All 
participants were measured at the MRC Epidemiology Unit Clinical Research Facilities in Ely, 
Wisbech and Cambridge.  Blood pressure measurements were taken with an Accutorr 
automated sphygmomanometer using the average of three measurements made at one-minute 
intervals with the participant seated for 5 minutes prior to measurement.  Of the 1,500 
individuals that were genotyped 98 individuals were excluded as their genotyping data did not 
meet the quality control criteria applied such that 1,402 individuals were included in the 
genome-wide association analyses. 

1.30 FHS 
The Framingham Heart Study began in 1948 with the recruitment of an original cohort of 
5,209 men and women (mean age 44 years; 55 percent women).  In 1971 a second generation 
of study participants was enrolled; this cohort consisted of 5,124 children and spouses of 
children of the original cohort.  The mean age of the offspring cohort was 37 years; 52 percent 
were women. A third generation cohort of 4,095 children of offspring cohort participants 
(mean age 40 years; 53 percent women) was enrolled beginning in 2002.  Details of study 
designs for the three cohorts are summarized elsewhere25-27.  At each clinic visit, a medical 
history was obtained with a focus on cardiovascular content, and participants underwent a 
physical examination including measurement of height and weight from which BMI was 
calculated.  Systolic and diastolic blood pressures were measured twice by a physician on the 
left arm of the resting and seated participant using a mercury column sphygmomanometer.  
Pressures were recorded to the nearest even number.  The means of two separate systolic and 
diastolic blood pressure readings at the first clinic examination of each cohort were used for 
GWAS analyses.  For a subset of offspring cohort participants only one measurement was 
obtained.  Individuals under 20 years of age, those who had a myocardial infarction, or 
congestive heart failure were excluded from the analyses because those conditions may affect 
blood pressure levels. 

1.31 FINRISK97 
FINRISK97 is a population-based, cross-sectional survey conducted in 1997 designed to study 
the prevalence of cardiovascular risk factors in Finland.  Genotypes were available in 7,023 
men and women free of exclusions.  Blood pressures in Finrisk97 were averaged from 2 
measures using a mercury column sphygmomanometer in seated participants resting for at least 
5 minutes28. 

1.32 FLEMENGHO 
FLEMENGHO is a family based population sample from a geographically defined area in 
North Belgium, and patients were recruited from August 1985 until December 200529.  The 
study population included 3,108 subjects.  Blood for DNA extraction could not be obtained 
from 422 participants, and we also excluded 323 teenagers and 1,076 adults with lower than 
median age at enrolment (41.4 years).  At the enrolment home visit, trained nurses measured 
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anthropometric characteristics and blood pressure.  Blood pressure was measured five times 
consecutively, after the subject had rested for at least 5 minutes in the seated position. All 
participants had systolic and diastolic (Phase V) blood pressures recorded within 2 mmHg to 
the nearest even number using a standard mercury sphygmomanometer.  The readings from 2 
home visits were averaged and used for the analysis (2x5). 

1.33 FUSION 
The Finland-United States Investigation Of NIDDM Genetics study aims to discover 
variants predisposing to type 2 diabetes (T2D) and T2D-related quantitative traits 
(http://fusion.sph.umich.edu/)30.  The FUSION GWAS sample includes 1,161 Finnish T2D 
cases and 1,174 normal glucose tolerant (NGT) controls and 122 offspring of case/control pairs 
(1 T2D, 119 NGT, 2 with impaired glucose tolerance).  GWAS data from the controls and 
NGT offspring were used for these analyses.  The blood pressure trait was the average of two 
seated measurements using a mercury sphygmomanometer after 5 minutes of rest28.  FUSION 
analyses were adjusted for birth province. 

1.34 FUSION2 
The Finland-United States Investigation Of NIDDM Genetics controls are an independent 
sample from the FUSION study, these were used for stage 2 targeted genotyping; cohort details 
and blood pressure measurements are the same as described above for the FUSION study. 

1.35 GRAPHIC 
The Genetic Regulation of Arterial Pressure of Humans In the Community (GRAPHIC) 
study comprises 2,037 white European subjects from 520 nuclear families recruited from the 
general population via participating family practitioners in Leicestershire, UK31.  Intensive 
cardiovascular phenotyping included 26-hour ambulatory blood pressure measures in all 
individuals and clinic blood pressure measures, for which three readings were made using an 
Omron HEM-705CP digital blood pressure monitor.  Clinic blood pressure was defined as the 
mean of the second and third blood pressure readings.  For the purposes of this analysis, clinic 
blood pressure recordings were used.  

1.36 HABC 
The Health ABC study is a prospective cohort study investigating associations between body 
composition, weight-related health conditions, and incident functional limitation in older 
adults.  Health ABC enrolled well-functioning, community-dwelling white (N=1,794) and 
black (N=1281), men and women aged 70-79 years between April 1997 and June 1998.  
Participants were recruited from a random sample of Medicare eligible residents in the 
Pittsburgh, PA, and Memphis, TN, metropolitan areas.  Blood pressure was collected at 
baseline using a conventional mercury sphygmomanometer, cuff, and stethoscope.  Participants 
were allowed to rest quietly for 5 minutes prior to measurement.  Caffeine, eating, heavy 
physical activity, smoking, and alcohol use were avoided for 30 minutes prior to recording the 
blood pressure. 
http://www.nia.nih.gov/ResearchInformation/ScientificResources/HealthABCDescription.htm 

1.37 HUFS 
The Howard University Family Study is a population based family study of 
African-Americans in the Washington DC metropolitan area, USA32.  The major objective of 
the HUFS was enroll and examine a randomly ascertained cohort of African-American 
families, along with a set of unrelated individuals, to study the genetic and environmental basis 
of common complex diseases including hypertension, obesity, and associated phenotypes.  
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Participants were sought through door-to-door canvassing, advertisements in local print media, 
and at health fairs and other community gatherings.  Families were not ascertained based on 
any phenotype.  During a clinical examination, blood pressure was measured in the sitting 
position using an oscillometric device (Omron).  Three blood pressure readings were taken 
with a ten-minute interval between readings.  The reported systolic and diastolic blood pressure 
readings were the average of the second and third readings. 

1.38 HUNT 2 
The Nord-Trøndelag Health Study samples were from the county of Nord-Trøndelag in 
central Norway and selected from the HUNT 2 study.  Details of the study sample have 
previously been described33.  Blood pressure was measured by specially trained nurses or 
technicians, using a Dinamap 845XT (Critikon), based on oscillometry.  Cuff size was adjusted 
after measuring the arm circumference.  The Dinamap was started after the participant had 
been seated for two minutes and blood pressure was measured automatically three times at one-
minute intervals.  The mean of the second and third measures were used in the analyses. 

1.39 HYPEST 
HYPertension in ESTonia is a population based case-cohort sample set consisting of 
unrelated subjects recruited between 2004 and 2007 across Estonia34.  The aim of the study was 
to find hypertension risk factors in the Estonian population.  All individuals have detailed 
epidemiological data and a documented history of multiple SBP and DBP readings (an average 
of 4.3 readings per individual) during a mean of 3.2 years.  The HYPEST essential 
hypertension patients were selected based on the clinical diagnosis and profile of blood 
pressure specialists during the patients’ ambulatory visits or hospitalization at the North 
Estonia Medical Center, Centre of Cardiology, or at the Cardiology Clinic, Tartu University 
Hospital, Estonia. The HYPEST healthy control cohort was recruited from among the long-
term blood donors.  After resting in the seated position, blood pressure readings were taken by 
a trained clinician using a standard mercury column sphygmomanometer with 
arm-circumference adjusted cuffs. 

1.40 IMS 
The Indian Migration Study is a sib-pair comparison study including urban factory workers 
who had migrated from rural areas together with their rural-dwelling sibling.  Recruitment was 
from 4 Indian factories: Lucknow, Nagpur, Hyderabad and Bangalore.  A 25% random sample 
of non-migrants was invited to participate in the study.  Each participant was asked to invite 
one non-migrant full sibling of the same sex and closest to them in age still residing in their 
rural place of origin.  Precedence was given to gender over age and where multiple sibs were 
available the one closest in age was invited.  Non-migrants were also asked to invite a sib who 
resided in the same city but did not work in the factory.  A wide range of phenotypic 
parameters were measured, including blood pressure.  BP was measured using an automatic 
oscillometric device (Omron HEM 705 CP, Omron, Matsusaka Co, Japan) in the sitting 
position using the right upper arm and an appropriate sized cuff after a period of 5 minutes rest.  
Two readings were taken for BP and their average has been used in analyses. 

1.41 InCHIANTI 
The Invecchiare in Chianti study is a representative population-based study of older people 
living in the Chianti area of Tuscany, Italy35.  All participants were >21 years of age and of 
white European origin.  Blood pressure was measured using a mercury sphygmomanometer in 
the supine position; the average of the 2nd and 3rd readings was used for the analysis. 
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1.42 INTERGENE 
This is a population based research program established to assess the INTERplay between 
GENEtic susceptibility and environmental factors for the risk of chronic diseases in western 
Sweden36,37.  Randomly sampled women and men aged 25-74 years and living in the Västra 
Götaland region between 2001 and 2004 were invited to participate.  For the purpose of the 
present study, 153 subjects of non-European origin were excluded and genotyping data were 
unavailable for a further 614 subjects, leaving 2,843 subjects with European ancestry.  All 
subjects provided extensive questionnaire information on risk factors, medication, and diseases 
and were invited for a clinical examination by a team of trained research nurses.  This included 
ECG, spirometry, blood sampling for genetic studies, as well as anthropometric and blood 
pressure measurements.  Blood pressure was measured twice after a 10-minute rest, with a 
validated automatic device (Omron 711 Automatic IS; Omron Healthcare Inc, Vernon Hills, 
IL)38 in the supine position, and the mean of two valid measurements was used for analyses. 

1.43 IRAS 
The IRAS Family Study was designed to study the genetics of insulin resistance and visceral 
adiposity.  A cohort of 1,856 participants was initially recruited in 1999-2002 from three US 
communities39.  Recruitment for the IRAS Family Study was based on recruiting family 
members of the original IRAS Study index cases on the basis of large family size, and not on 
extreme phenotype (e.g., insulin resistance, obesity).  African-American families were 
recruited in Los Angeles, CA.  Resting seated blood pressure was measured three times using a 
mercury manometer, after a 5-minute rest by centrally trained technicians using identical 
equipment.  The mean of the last two measurements was used to calculate blood pressure used 
in the analyses. 

1.44 Jamaicans-GXE 
Jamaican-GXE participants were recruited from the city of Kingston, Jamaica as part of a 
larger project to examine gene by environment interactions on blood pressure among adults 
25-74 years. Participants were either identified from the records of the Heart Foundation of 
Jamaica, a non-governmental organization based in Kingston, which provides low-cost 
screening services (height and weight, blood pressure, glucose, cholesterol) to the general 
public, or from among participants in family studies of blood pressure at the Tropical 
Metabolism Research Unit and from among staff members at the University of the West Indies, 
Mona. Screenees were eligible to participate if their body mass index (BMI) was in either the 
top or bottom third of BMI for the Jamaican population40; all participants were unrelated to 
each other.  BP was measured 3 times in the brachial fossa in the sitting position with a 
mercury sphygmomanometer according to procedures described previously41; the mean of the 
last two measurements was used in the analysis. 

1.45 Jamaicans-Spanish Town 
Jamaican-Spanish Town participants were recruited from, in, and around Spanish Town, a 
stable, residential urban community neighboring the capital city of Kingston, Jamaica, as part 
of the International Collaborative Study of Hypertension in Blacks (ICSHIB) described in 
detail elsewhere40.  A stratified random sampling scheme was used to recruit adult males and 
females aged 25 years and older.  BP was measured 3 times in the brachial fossa in the sitting 
position with a mercury sphygmomanometer according to procedures described previously41 
and the mean of the last two measurements was used in the analysis. 
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1.46 Japanese (Takeuchi 2010) 
These summary association results were extracted from Supplementary Table 2 of the work by 
Takeuchi et al.42, which reported association statistics for SBP and DBP (adjusted by 
+15mmHg and +10mmHg for individuals on medication) with genotypes at some SNPs 
previously published.  These data derive from a sample of 1,526 Japanese individuals 
genotyped using the Infinium HumanHap550 BeadArray. 

1.47 JMGP 
The Japanese Millenium Genome Project comprises 7 independent study cohorts for studies 
of cardiovascular diseases and related risk factors.  The Ohasama, Shigaraki, Takashima, Suita, 
and Nomura Ehime studies are general population based genetic epidemiological studies of 
subjects recruited via a medical check-up process for community-residents.  The Ohasama 
study is a population-based longitudinal epidemiological study focusing on the clinical 
implications of home BP measurement43. The Shigaraki44 and Takashima45 studies of Shiga 
University of Medical Science are general population-based longitudinal studies and subjects 
were recruited through a community-based annual medical check-up process.  The Suita study 
is based on the residents of Suita city, an urban city located in the second largest area of Osaka, 
Japan46.  Subjects were recruited through a biennial medical check-up process of the National 
Cardiovascular Center.  The Ehime (Nomura study) is a longitudinal epidemiological study 
based on the Nomura Town residents47.  The Yokohama (Yokohama City University) and 
Matsuyama (Ehime University) cohorts are derived from employees of large manufacturing 
industries located in Kanagawa and Matsuyama City, Ehime Prefecture (western part of 
Japan)48, respectively.  In our analyses, our descriptor Ehime includes individuals from both 
the Nomura Ehime population based samples and Matsuyama cohort (University cohort) 
combined.  In all cohorts, clinical parameters were obtained from personal health records 
during the annual or biennial medical check-up process. 

1.48 KARE 
The Korea Association REsource project was initiated in 2007 to perform large-scale 
genome-wide association analyses of the Ansung and Ansan population-based cohorts in 
Korea49.  The cohorts were collected as part of the Korean Genome Epidemiology Study and 
included 5,018 Ansung and 5,020 Ansan inhabitants between 40 and 69 years of age.  
Individuals were collected in the Gyeonggi Province, close to Seoul, Republic of Korea. All 
participants have been examined every two years since baseline, and more than 260 traits have 
been examined.  Blood pressure measurements were taken three times in the supine position, 
following resting for 5 minutes.  The average of 3 readings was used for these analyses. 

1.49 KORA 
The KOoperative Gesundheitsforschung in der Region Augsburg (third survey: S3/F3) is 
an epidemiological cohort recruited from the general population of Augsburg, Germany in 
1994-199550,51.  A subset of this survey (1,644 subjects), were genotyped using the Affymetrix 
500K array (http://epi.helmholtz-muenchen.de/kora-gen/).  In this study subjects with BMI<35 
kg/m2 were included; diabetics were excluded.  Final number of subjects entering the 
association analysis with blood pressure was 1,503.  Blood pressure was measured using a 
random zero sphygmomanometer in the seated position at the first examination cycle.  Three 
measurements were taken at least three minutes apart and the numbers entering the database 
were the mean of the last two measurements. 
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1.50 KORCULA 
The KORCULA study sampled Croatians from the Adriatic island of Korcula (N=969), 
between the ages of 18 and 88.  The fieldwork was performed in 2007 in the eastern part of the 
island, targeting healthy volunteers from the town of Korčula and the villages of Lumbarda, 
Žrnovo and Račišće52.  Over 150 quantitative traits were measured to each participant.  Blood 
pressure was measured using standard procedures, briefly, the subject was seated in a quiet 
room, and they were advised to not have done any exercise, or have been exposed to the cold, 
eaten, or smoked for 30 minutes prior to the recording. Following 5 minutes of rest, blood 
pressure was recorded twice during the examination and the mean of the two readings was used 
for the analyses. 

1.51 LOLIPOP 
The LOndon LIfe Sciences POPulation study is an ongoing population-based cohort study 
of ~30,000 individuals (18,000 Indian Asians and 12,000 European white men and women), 
aged 35-75 years and recruited from the lists of 58 general practitioners in West London, 
United Kingdom53,54. Blood pressure was measured using an Omron 705CP sphygmomanometer 
(mean of 3 measurements) with the subject seated.  For the European ancestry validation stage 
of the present study, lookups were performed in 3 subgroups of European White (EW) ancestry 
that had been genotyped using 3 GWAS platforms - LOLIPOP (EW_A), LOLIPOP (EW_P) 
and LOLIPOP (EW_610) - comprising in total 1,603 individuals.  For the South Asian ancestry 
replication stage of the present study, we used genotype data from 7 SNPs that had been 
genotyped in 12,900 individuals during previous work55, and complemented these with lookups 
for 22 SNPs in 2 subgroups of Indian Asian ancestry that had been genotyped using 2 GWAS 
platforms - LOLIPOP (IA317) and LOLIPOP (IA610) - comprising in total 8,688 individuals.  
Analyses in GWAS datasets were adjusted for ancestry principal components, and analyses in 
the larger IA sample were adjusted for self-reported religion. 

1.52 MDC 
The Malmö Diet and Cancer study is a community-based prospective epidemiologic cohort 
of 28,449 persons recruited for a baseline examination between 1991 and 1996.  From this 
cohort, 6,103 persons were randomly selected to participate in the Cardiovascular Cohort 
(MDC-CC), which seeks to investigate risk factors for cardiovascular disease56.  Blood 
pressure was measured using a mercury sphygmomanometer once after 10 minutes of rest in 
the supine position. 

1.53 MESA 
The Multi-Ethnic Study of Atherosclerosis investigation is a population-based study of 6,814 
men and women age 45 to 85 years, without clinical cardiovascular disease, recruited from six 
United States communities (Baltimore, MD; Chicago, IL; Forsyth County, NC; Los Angeles 
County, CA; northern Manhattan, NY; and St. Paul, MN).  The main objective of MESA is to 
determine the characteristics of subclinical cardiovascular disease and its progression.  
Sampling and recruitment procedures have been previously described in detail57.  Adults with 
symptoms or history of medical or surgical treatment for cardiovascular disease were excluded.  
During the recruitment process, potential participants were asked about their race/ethnicity.  
Self-reported ethnicity was used to classify participants into groups58.  After a 5-minute rest BP 
was measured three times at 1 minute intervals using a Dinamap PRO 100 automated 
oscillometric device (Critikon, Tampa, FL) with the subject in seated, and the average of the 
second and third BP measurements was used in the analysis.  Additional individuals were 
derived from the MESA Family Study, an ancillary study to MESA whose goal is to identify 
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genes contributing to the risk for cardiovascular disease, by looking at the early manifestations 
of atherosclerosis within families, mainly siblings.  MESA Family studied siblings of index 
subjects from the MESA study and sib-pairs in new families ascertained through index subjects 
meeting MESA enrollment criteria.  In a small proportion of subjects, parents of MESA index 
subjects participating in MESA Family were studied but only to have blood drawn for 
genotyping.  The MESA Family cohort was recruited from the six MESA Field Centers during 
May 2004 - May 2007.  The number of non-classic MESA family members recruited was 
1,633 (950 African-Americans and 683 Hispanic-Americans) from 594 families, yielding 3,026 
sib-pairs.  Participants underwent the same examination as MESA participants. 

1.54 METSIM 
The METabolic Syndrome In Men study includes men aged 45-72 years, randomly selected 
from the population of the town of Kuopio, Eastern Finland, Finland (population 95,000).  
Detailed sample characteristics of this cohort have been previously reported59.  The present 
analysis is based on the first 7,055 subjects examined for METSIM.  Blood pressure was 
measured in the seated position after 5 minutes rest using a mercury sphygmomanometer.  The 
average of 3 measurements was used in the analysis. 

1.55 MICROS 
The Micro-Isolates in South Tyrol (MICROS, EUROSPAN) study 
(http://www.biomedcentral.com/1471-2350/8/29) is part of the genomic health care program 
'GenNova' and was carried out in three villages of the Val Venosta on the populations of 
Stelvio, Vallelunga and Martello. This study was an extensive survey carried out in South 
Tyrol (Italy) in the period 2001-2003.  Study participants were volunteers from three isolated 
villages located in the Italian Alps, in a German-speaking region bordering with Austria and 
Switzerland. Due to geographical, historical and political reasons, the entire region experienced 
a prolonged period of isolation from surrounding populations. The 1,096 participants included 
in this study are those which had both phenotypic and GWAS data available. Blood pressure 
was taken after 3 minutes rest and 3 consecutive measurements were recorded on the right 
upper arm using an Omron HEM-705CP. The median for each person was used in the analysis. 

1.56 MIGen 
The Myocardial Infarction Genetics Consortium cohort is composed of a subset of the 
controls of a case-control study aimed at identifying genetic variants associated with 
early-onset myocardial infarction.  Most of the controls are selected from population based 
cross-sectional or cohort studies and come from five different studies: Heart Attack Risk in 
Puget Sound (Seattle, USA), REGICOR (Girona, Spain), MGH Premature Coronary Artery 
Disease Study (Boston, USA), FINRISK (Finland); Malmö Diet and Cancer Study (Malmö, 
Sweden).  There is a minimal overlap of samples between the resources (N=30).  For the 
majority of studies, blood pressure was measured twice using calibrated sphygmomanometers, 
in the seated position after at least 5 minutes of rest; the mean of the two measurements was 
used in the analysis.  The first two principal components from an identical by state (IBS) 
analysis were used to adjust for potential population stratification. 

1.57 MPP 
The Malmö Preventive Project is a screening program for cardiovascular risk factors and 
comprises 33,346 Swedish subjects (22,444 men and 10,902 women) from the city of Malmö 
in southern Sweden60.  There are 14,600 with DNA after removing subjects who were also 
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participants in MDC-CC (see above).  Blood pressure was measured using a mercury 
sphygmomanometer (mean of 2 measurements) after 10 minutes of rest supine. 

1.58 MRC NSHD 
The Medical Research Council (MRC) National Survey of Health and Development 
(NSHD) is an ongoing prospective birth cohort study consisting of a stratified random sample 
of all births in England, Scotland and Wales in one week in March 1946 
(http://www.nshd.mrc.ac.uk/)61.  The original cohort comprised 2,547 women and 2,815 men 
who have been followed up over 20 times since their birth. In 1999, when the cohort members 
were aged 53 years, 2,989 individuals were interviewed in their homes by research nurses.  
During these visits, blood pressure was measured twice, with the survey member seated and 
after 5 minutes of rest, using an Omron HEM-705 automated digital oscillometric 
sphygmomanometer (Omron); the 2nd blood pressure reading was used for this analysis. 

1.59 NFBC1966 
The North Finland Birth Cohort of 1966 was designed to study factors affecting preterm 
birth, low birth weight, and subsequent morbidity and mortality (http://kelo.oulu.fi/NFBC/).  
The longitudinal data collection includes clinical examination and blood sampling at age 31 
years, from which data in the current study are drawn.  The attendees in the follow-up (71% 
response rate) were adequately representative of the original cohort62 as is the final study 
sample in the present analyses.  Blood pressure was measured using a mercury 
sphygmomanometer, seated, from the right arm after 15 minutes rest.  The average of two 
readings taken 5 minutes apart was used for the analyses.  Both questionnaire and national 
medication reimbursement data were used for anti-hypertensive medication information. 

1.60 Nigerian 
The participants were recruited from Ibadan and Igbo-Ora, Yoruba-speaking communities in 
southwest Nigeria as part of a long-term study on the environmental and genetic factors 
underlying hypertension63.  A screening examination was completed by trained research staff, 
using a standardized protocol40 and trained local interviewers obtained a medical history and a 
family history in the participant’s native language.  BP observers were trained and certified by 
a previously described procedure40.  An automated device (Omron HEM-412C) was used for 
all BP measurements and three measurements were taken three minutes apart.  The average of 
the final two readings was used in the analysis. 

1.61 NPHS-II 
The Northwick Park Heart Study II is a prospective study of 3,012 healthy middle-aged men 
aged 50-64 years at recruitment, sampled from nine UK general practices between 1989 and 
1994. Full details of recruitment, measurements, follow-up and definitions of incident disease 
have been reported elsewhere64.  Exclusion criteria were:  history of unstable angina or acute 
myocardial infarction, a major Q wave on the ECG, regular anti-platelet or anticoagulant 
therapy, cerebrovascular disease, and life-threatening malignancy. Blood pressure was 
recorded with a random-zero sphygmomanometer (average of 2 measurements) at baseline and 
on five following annual visits. Baseline measures were used for these analyses. 

1.62 NSPHS 
The Northern Swedish Population Health Study (EUROSPAN) represents a family-based 
prospective population study located in the parish of Karesuando, in the subarctic region of the 
County of Norrbotten, Sweden.  This parish has about 1,500 inhabitants, of whom 740 
participated in the study.  Historic population accounts show that there has been little 
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immigration or other dramatic population changes in this area during the last 200 years.  The 
study includes a comprehensive health investigation and collection of data on family structure, 
lifestyle, diet, medical history, and samples for clinical chemistry, RNA and DNA analyses. 
Blood pressure was taken once by the auscultatory method using a sphygmomanometer and a 
stethoscope. 

1.63 ORCADES 
The Orkney Complex Disease Study (EUROSPAN) is an ongoing family-based 
cross-sectional study in the isolated Scottish archipelago of Orkney.  Genetic diversity in this 
population is decreased compared to Mainland Scotland, consistent with the high levels of 
endogamy historically.  Data for participants from a subgroup of ten islands were used for this 
analysis.  Fasting blood samples were collected and over 200 health-related phenotypes and 
environmental exposures were measured in each individual.  BP was recorded twice five 
minutes apart using a calibrated Omron digital sphygmomanometer, after at least 10 minutes of 
supine rest; the mean of the readings was used for the analyses. 

1.64 PMNS 
The Pune Maternal Nutritional Study is the first Birth Cohort study in India to investigate 
the relationship between maternal nutrition and offspring risk of type 2 diabetes and 
cardiovascular disease.  The study recruited non-pregnant married women in six villages near 
Pune, Western India. The subjects included in the ICBP study are parents of children studied in 
the PMNS.  Blood pressure was measured in the supine position using an automated machine 
(UA 767PC; A and D Instruments, Abingdon, Oxford, U.K.). 

1.65 PREVEND 
The Prevention of REnal and Vascular ENd stage Disease study is an ongoing prospective 
study investigating the natural course of increased levels of urinary albumin excretion and its 
relation to renal and cardiovascular disease65,66.  Inhabitants 28 to 75 years of age (N=85,421) 
in the city of Groningen, The Netherlands, were asked to complete a short questionnaire, 47% 
responded, and individuals were then selected with a urinary albumin concentration of at least 
10 mg/L (N= 7,768) and a randomly selected control group with a urinary albumin 
concentration less than 10 mg/L (N=3,395). Details of the protocol have been described 
elsewhere (www.prevend.org).  Blood pressure was measured in the supine position every 
minute for 10 and 8 minutes, respectively, with an automatic Dinamap XL Model 9300 series 
monitor (Critikon, Tampa, Florida). Systolic and diastolic blood pressures were calculated as 
the mean of the last two measurements at the two visits. 

1.66 PROCARDIS 
The Precocious Coronary Artery Disease study (PROCARDIS) (www.procardis.org) is a 
European consortium investigating the genetics of precocious coronary artery disease (CAD) in 
German, Italian, Swedish, and British CAD patients and controls67.  Country of origin was a 
covariate in all analyses.  The controls were included in this study; these had no personal 
history of CAD, hypertension, or diabetes.  Blood pressure was measured twice using various 
sphygmomanometers, in the seated position after at least 5 minutes of rest; the mean of the two 
measurements was used. 

1.67 PROMIS 
Pakistan Risk Of Myocardial Infarction Study is a case-control study of acute first-ever MI 
in urban Pakistan.  A locally piloted and validated epidemiological questionnaire was 
administered to participants by medically qualified research officers that sought more than 200 
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items of information in relation to ethnicity, demographic characteristics, lifestyle factors (e.g., 
tobacco and alcohol consumption, dietary intake, and physical activity), personal and family 
history of cardiovascular disease, and medication use.  The control subjects were included in 
this study.  Blood pressure was measured by research medical officers who were registered 
physicians using standard blood pressure apparatus.  Measurements were taken twice ten 
minutes apart whilst the participants were seated.  The first reading was taken at least 15 
minutes after an eligible participant had arrived at the recruitment centre; the value used in the 
analyses is the mean of the two measurements. 

1.68 Prospect-EPIC 
Prospect-EPIC is one of the two Dutch contributions to the European Prospective 
Investigation into Cancer and Nutrition (EPIC)68.  Participants were recruited between 1993 
and 1997 among women living in Utrecht and its vicinity and who attended the regional 
population-based breast cancer screening program. A total of 17,357 women aged 49-70 years 
were included.  For laboratory analysis a 10% random sample of 1,736 samples was used. 
Blood pressure was measured using an automated and calibrated Oscillomat (Bosch & Son, 
Jungingen, Germany); the average of two readings after 10 minutes rest in the seated position 
was used for the analysis. 

1.69 RS-I and RS-II 
The Rotterdam Study (RS-I) and Rotterdam Extension Study (RS-II) are prospective 
population-based cohort studies; the RS-I comprises 7,983 subjects aged 55 years or older. 
Participants completed an interview at home and at the research centre, where participants were 
subsequently examined. Baseline data were collected between 1990 and 1993.  In 1999, 
inhabitants who turned 55 years of age or moved into the study district since the start of the 
study were invited to participate in an extension of the RS (RS-II), 3,011 participated (67% 
response rate). The rationale and design of the RS have been described in detail elsewhere69.  
At the research centre, we obtained two seated blood pressure measurements of the right 
brachial artery with a random zero sphygmomanometer.  The mean of two consecutive 
measurements was used in association analyses.  We excluded participants who were older 
than 85 years of age and those who had a history myocardial infarction or congestive heart 
failure, because of the impact of these conditions on blood pressure levels. 

1.70 SardiNIA 
The SardiNIA study is a longitudinal study examining age-related quantitative traits in 
individuals from the Ogliastra region of Sardinia, Italy70.  The SardiNIA GWAS examined 
4,305 related individuals (age >14 years), of whom 3,998 individuals were included in this 
study.  Blood pressure was measured using a mercury sphygmomanometer; the average of the 
second and third reading was used for the analyses. 

1.71 SHIP 
The Study of Health In Pomerania is a population-based survey in West Pomerania, the 
northeast area of Germany71.  A sample from the adult population aged 20 to 79 years was 
drawn based on population registries of cities and towns in the region.  SHIP finally comprised 
4,308 participants (corresponding to a final response rate of 68.8%).  3,310 individuals with 
GWAS data were included in this study.  Blood pressure was measured three times, seated, 
after 5 minutes of rest, using a digital blood pressure monitor (HEM-705CP, Omron 
Corporation, Tokyo, Japan), after a rest period of 3 minutes for each measurement.  The mean 
of the second and third measurements was used in the analyses. 
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1.72 SiMES 
Singapore Malay Eye Study is a population-based cross-sectional epidemiological study of 
3,280 individuals from one of the three major ethnic groups residing in Singapore72,73.  All 
subjects were Malay and aged 40-80 years.  Two readings of blood pressure were taken from 
participants after 5 minutes of rest, seated, using an automated blood pressure monitor 
(Dinamap Pro100V2; Criticon, Norderstedt, Germany) by trained observers.  One of two cuff 
sizes (regular, large) was chosen on the basis of the circumference of the participant’s arm.  A 
third reading was performed if the difference between two readings of either the systolic blood 
pressure was greater than 10mmHg or the diastolic blood pressure was greater than 5mmHg.  
The mean values of the closest two readings were calculated. 

1.73 SP2 
Singapore Prospective Study Program is a population-based study of diabetes and 
cardiovascular disease in Singapore that has been described previously74. The SP2 has 
recruited 10,633 Chinese, Malay, and Indian subjects from four cross-sectional studies that 
were conducted in Singapore between 1984 and 1998.  Subjects were aged 18-69 at baseline 
and represented a random sample of the Singapore population.  Two readings of blood pressure 
were taken from participants after 5 min of rest, seated, using an automated blood pressure 
monitor (Dinamap Pro100V2; Criticon, Norderstedt, Germany) by trained observers.  One of 
two cuff sizes (regular, large) was chosen on the basis of the circumference of the participant’s 
arm.  A third reading was performed if the difference between two readings of either the 
systolic blood pressure was greater than 10mmHg or the diastolic blood pressure was greater 
than 5mmHg.  The mean values of the closest two readings were calculated. 

1.74 SPLIT 
The SPLIT study is an ongoing cross-sectional study that samples Croatians from the town of 
Split, between the ages 18 and 85. The sampling started in 2008, and continues throughout 
201075.  A wide range of phenotypic measurements is available.  Blood pressure was measured 
using standard procedures.  Briefly, the subject was seated in a quiet room and they were 
advised to not have done any exercise, or have been exposed to the cold, eaten, or smoked for 
half an hour prior to the recording.  Following 5 minutes of rest, blood pressure was recorded 
twice during the examination and the mean of the two readings was used for the analyses. 

1.75 SU.VI.MAX 
The SUpplementation en VItamines et Mineraux AntioXydants study is a longitudinal 
study performed on a national sample of healthy volunteers from France between 1996 and 
2001.  1,823 individuals, aged 35-65 years at baseline were included in this study76.  Blood 
pressure was measured using a mercury sphygmomanometer in the seated position; the average 
of three readings taken from the first examination (1996) was used in the analysis. 

1.76 TwinsUK 
The TwinsUK Study comprises a sample of healthy female whites recruited through the 
TwinsUK registry in London (http://www.twinsuk.ac.uk/).  All participants were recruited 
from the general population without presence or interest in any particular disease or trait 
through national media campaigns.  One of each twin pair was selected, with ages ranging 
from 18 to 76 years.  Blood pressure was measured using an Omron HEM-907 machine, 
seated.  Three readings were taken, the first was discarded and the average of the other two was 
used in the analyses.  In the GWAS discovery (stage 0) data from 873 Twins UK participants 
was used (TwinsUK).  During the study data from a further 2,163 independent individuals 
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from study became available for analyses (TwinsUK2), which were used for lookups in stage 3 
validation. 

1.77 WELGEN 
The Wellcome Genetic study comprises consecutively recruited young type 2 diabetes 
patients from the Diabetology Research Centre, King Edward Memorial Hospital and Research 
Centre (KEMHRC), Pune, Western India.  Patients were diagnosed and classified according to 
WHO 1999 criteria, subjects with ketoacidosis at diagnosis, clinically judged to be insulin 
dependent, with exocrine pancreatic disease (fibrocalculous pancreatic diabetes) and those who 
fulfill clinical criteria of Maturity Onset Diabetes of the Young (MODY) were excluded from 
the study.  Phenotypic details were collected using an investigator-administered questionnaire 
and blood pressure, anti-hypertensive medications, lipid profile and various obesity measures 
were also collected.  BP measurements were made in the seated position after 5 minutes rest 
using a Diamond Regular BP apparatus (India). 

1.78 VIS 
The VIS (Croas; EUROSPAN) study includes Croatians, aged 18 to 93 years, who were 
recruited during 2003 and 2004 in a population-based study in the villages of Vis and Komiza 
on the Dalmatian island of Vis, Croatia75,77.  Biochemical and physiological measurements 
were performed, detailed genealogies reconstructed, questionnaire of lifestyle and 
environmental exposures collected, and blood samples and lymphocytes extracted and stored 
for further analyses.  Blood pressure was measured using standard procedures, briefly, the 
subject was seated in a quiet room, and they were advised to not have done any exercise, have 
been exposed to cold, eaten, or smoked for 30 minutes prior to the recording.  Following 5 
minutes of rest, blood pressure was recorded twice during the examination and the mean of the 
two readings was used for the analyses. 

1.79 WGHS 
The Women’s Genome Health Study (WGHS) is a prospective cohort of female North 
American health care professionals representing participants in the Women’s Health Study 
(WHS) trial who provided a blood sample at baseline and consent for blood-based analyses.  
Participants in the WHS were 45 years or older at enrolment and free of cardiovascular disease, 
cancer or other major chronic illness.  For the primary WHS endpoints of cardiovascular 
disease, full medical records were obtained for reported endpoints and reviewed by an 
endpoints committee of physicians unaware of assignment.  The current data are derived from 
23,294 WGHS participants for whom whole genome genotype information was available at the 
time of analysis and for whom self-reported European ancestry could be confirmed by 
multidimensional scaling analysis of 1,443 ancestry informative markers in PLINK v. 1.06.  
Baseline BP in the WGHS was ascertained by a self-reported questionnaire, an approach which 
has been validated in the WGHS demographic, namely female health care professionals78-80.  
Questionnaires recorded systolic blood pressure in 9 categories (<110, 110-119, 120-129, 130-
139, 140-149, 150-159, 160-169, 170-179, ≥180 mmHg), and diastolic blood pressure in 7 
categories (<65, 65-74, 75-84, 85-89, 90-94, 95-104, ≥105 mmHg).  The midpoint of each 
category was used for analysis.  Hypertension was defined as a history of physician-diagnosed 
HTN and ongoing HTN treatment, or SBP ≥ 140 or DBP ≥ 90 mmHg.  To account for 
treatment effects, 10 and 5 mmHg were added to the measured systolic and diastolic blood 
pressures respectively, if a participant was taking antihypertensive medication81. 
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1.80 WHII 
The Whitehall II Study recruited 10,308 participants (70% men) between 1985 and 1989 and 
involved 20 London based civil service departments.  In this longitudinal study blood pressure 
was recorded at phase 1 (1985-1988), phase 3 (1991-1993), phase 5 (1997-1999) and phase 7 
(2003-2004).  DNA was stored from phase 7 from over 6,000 participants. The study 
individuals are all highly phenotyped for cardiovascular and other ageing related health 
outcomes.  Blood pressure measurements were taken by a nurse, using an Omron HEM-907 
blood pressure monitor.  Three measurements were taken with the participants in a seated 
position following a 10 minute rest period. 

1.81 YFS 
Cardiovascular risk in Young Finns Study was set up to determine the contribution of 
childhood lifestyle, biological, and psychological measures to the risk of cardiovascular 
diseases in adulthood.  In 1980, over 3,500 children and adolescents from all over Finland 
participated in the baseline study.  Thereafter these subjects were followed up with several 
examinations including comprehensive risk factor assessments.  The 27-year follow-up was 
performed in 2007 and the blood pressure measurements at this time point were used for this 
study.  Blood pressure was measured by nursing staff three times using a random-zero 
sphygmomanometer and the average of the three measurements was taken.  Individuals were 
excluded if BMI, systolic or diastolic blood pressure measurements or genotype data were 
missing. 

1.82 YMCA 
Young Men Cardiovascular Association Study is a cohort of 1,157 unrelated young, 
apparently healthy men recruited from randomly selected secondary schools in Southern 
Poland82.  Phenotyping for conventional cardiovascular risk factors included taking medical 
history, basic anthropometry, and fasting blood biochemistry.  Blood pressure measurements 
were conducted in a sitting position using a mercury sphygmomanometer and three readings 
were averaged to estimate the final systolic and diastolic blood pressure values. 

2. Blood pressure and hypertension association analyses 
Most of the studies included in ICBP GWAS are cross-sectional, with observations at a single 
time-point. Substantial numbers of participants had blood pressure measured while taking 
antihypertensive or blood pressure-lowering medication.  The prescription of these medications 
generally depends on assessments of blood pressure levels while off medication, with 
individuals with higher blood pressure generally more likely to be treated.  If measured blood 
pressure values are used for association analyses this generates a bias, which is not corrected 
(and indeed may be exacerbated) by using medication status as a covariate83.  Following the 
recommendation of Tobin, Sheehan et al83, we imputed the off-treatment blood pressure value 
for treated individuals by adding 15mmHg to measured SBP and 10mmHg to measured DBP 
for all treated individuals. We used these imputed values plus measured values for un-treated 
individuals for all analyses described here.  Alternative adjustment methods (addition of 
10/5mmHg) gave very similar results in an interim analysis. 
In general, association analyses for SBP and DBP were conducted using linear regression, and 
analyses for dichotomous hypertension using logistic regression.  All analyses assumed an 
additive genetic model, that is, for each SNP we coded the genotype as 0/1/2, indicating the 
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subject’s number of copies of the designated coded allele.  For imputed SNPs, we either used 
(a) the expected number of copies of the coded allele as the genotype or (b) a quadratic 
approximation to the missing data likelihood2.  These approaches are both proper score tests 
and are asymptotically equivalent84,85. 
For dichotomous hypertension, we sought uniform definition across all studies, which in many 
cases had recorded medications taken by each subject.  We defined cases as individuals with 
SBP ≥ 140mmHg, or DBP ≥ 90mmHg, or who were taking anti-hypertensive or blood 
pressure-lowering medication for any reason (the indication for each medication was typically 
not recorded).  We used all other individuals as controls. 
All association analyses were either stratified by sex or used sex as a covariate.  In addition, 
age, age-squared, and BMI were always included as covariates (except where these covariates 
were uniformly identical, i.e. in cohorts of individuals born in a given year).  Where available 
and appropriate, additional covariates were used to correct for potential within-cohort 
stratification. In studies with GWAS data these were typically ancestry principal components86, 
but additional recruitment site or self-declared ancestry variables were used by some studies.  
Because of the strong phenotypic correlation between blood pressure and BMI, the inclusion of 
BMI as a covariate reduces residual variance and may therefore increase power to detect 
associations between SNPs and blood pressure. However, inclusion of BMI as a covariate 
could potentially reduce power in some cases, such as for variants of pleiotropic effect with 
direct impact on both blood pressure and BMI (unless their effect goes in the opposite direction 
for the two).  SNPs that affect blood pressure only via an effect on BMI are not of specific 
interest in our study since such variants are best identified by GWAS for BMI.87-89  
For all association analyses, covariates were either (a) included directly in the analysis for each 
SNP, or (b) used to compute a residual (from regression) that was then tested for association 
with each SNP in turn.  These approaches give extremely similar results in practice. 

3. Meta-analysis 
We conducted separate genome wide meta-analyses for SBP and DBP.  Before meta-analysis, 
the association results for each cohort were filtered to exclude SNPs not in HapMap, SNPs 
with alleles different from HapMap, and SNPs with observed/expected ratio of coded genotype 
scores less than 0.3.  The latter ratio is a measure of imputation quality; for an allele with 
frequency p, the expected variance at Hardy Weinberg proportions for an allele dosage (coded 
as 0, 1, 2 for a directly genotyped SNP) is 2p*(1-p); for poorly imputed SNPs the allele 
dosages typically “shrink” towards 2p and the variance of actual scores is often smaller than 
expected. A genomic control correction was applied90 by multiplying all standard errors in a 
given study’s results by a factor √λ, where λ is the median χ2(of association statistic)/0.4549.  
Where studies stratified their analyses by sex, genomic control was applied within each sex 
stratum. For each SNP, the per-coded-allele effects were combined across studies (and across 
sex strata, when used) using inverse variance weighted meta-analysis.  Finally, a second 
genomic control correction was applied to the meta-analysis standard errors in the same way as 
for the individual studies. 
Results from stage 0 (discovery) and stages 1&2&3 (validation) were also combined using 
inverse-variance weights.  As stages 1 and 2 contained few SNPs and were greatly enriched for 
SNPs truly associated with blood pressure, the median χ2 statistic is not a reliable measure of 
stratification, so genomic control was not applied here. 
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All data handling and meta-analyses were conducted by two separate analysts (T.J. and G.B.E.) 
working independently at separate locations, and were checked to ensure concordance. 

4. Sequential experimental design 
For discovery of new blood pressure loci, our aim was to maximize statistical power while not 
‘wasting’ resources on genotyping unlikely to materially alter results. We therefore adopted a 
sequential experimental design with three stages of validation genotyping in samples of 
European ancestry as illustrated in Supplementary Figure 1. The P-value thresholds used for 
skipping targeted genotyping at the end of Stages 0 and 1 do not reflect any a priori 
determined most powerful sequential experiment design, but rather reflect the historical 
process whereby a large GWAS dataset (WGHS, see 1.79) used in Stage 3 only became 
available after commencement of Stage 2 genotyping, which was restricted to 27 SNPs. 
Stage 0 (completed in May 2009) consisted of meta-analysis of GWAS data from N=69,395 
individuals plus follow-up genotyping at selected SNPs55.  At this time, 9 SNPs had 
sufficiently strong evidence, defined as P < 2.5x10-8 and previously reported to be associated 
with blood pressure after discovery and validation in subsets of our Stage 0 dataset,55,91 such 
that no further validation using follow-up genotyping was deemed necessary. 
From the remaining SNPs, using an informal combination of the Stage 0 P-value, functional 
and bioinformatic data, and literature searches, we took 27 SNPs into Stage 1 for further 
genotyping in N=42,644 individuals.  These included 4 SNPs at loci previously reported 
(ZNF652, ULK4, TBX5-TBX3, CACNB2)55,91 but which had stage 0 P > 2.5x10-8 and which we 
therefore thought warranted further effort to confirm or reject association. Note that the stage 0 
P-values for these 4 SNPs differ slightly from previously published data55,91 because previous 
work by the CHARGE consortium used a +10mmHg/+5mmHg increment to impute off-
treatment BP, whereas we used a +15mmHg/+10mmHg increment here.  In Stage 1 (completed 
August 2009) P-values were calculated for a joint analysis of all Stage 0 and 1 data.  After 
Stage 1, nine of the 27 SNPs had P < 10-10, and no further genotyping was deemed necessary. 
Nine SNPs (with 10-10 < P < 5x10-7) were considered to merit further genotyping, and the 
results from eight were deemed “inconclusive” (P > 5x10-7). 
The nine SNPs selected for further genotyping were examined in Stage 2 in an additional 
N=63,374 individuals of European ancestry. 
After Stage 2 genotyping had commenced (August 2009), GWAS data in a further N=9,041 + 
23,294 (WGHS) individuals became available and were added to our study for all SNPs 
genotyped in Stage 1, as well as all SNPs which had attained P < 2.5x10-8 in Stage 0.  In Stage 
3 (May 2010 for receipt of WGHS data for all SNPs), P-values were calculated for a joint 
analysis of all data (Stage 0, Stage 1 if available, Stage 2 if available, and Stage 3). 
Noting that our rules for “early stopping” of the follow-up experiment were P<2.5x10-8 at the 
end of stage 0, and P<10-10 at the end of stage 1, we determined that when all available data 
were meta-analysed for each SNP at the end of stage 3, a significance threshold P<2.5x10-8 
would conservatively ensure a false positive rate less than 5x10-8 per SNP per phenotype, after 
accounting for interim decisions in the sequential design. 
To estimate the realised false positive rate for our sequential design, we calculated the per-SNP 
per-phenotype false positive rate contributions from each of the four mutually-exclusive 
possible declarations of significance.  Under standard assumptions of test statistic normality, 
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independence of data collected at different stages, and assuming sample sizes (proportional to) 
70k, 40k, 40k and 25k for stages 0, 1, 2 and 3, these are as follows: 
 Pr [P0 < 2.5x10-8 and P 03 < 2.5x10-8] = 2.83x10-9 

 Pr [P 0 > 2.5x10-8 and P 01 < 10-10 and P 013 < 2.5x10-8] = 5.53x10-11 

 Pr [P 0 < 2.5x10-8 and 5x10-7 < P 01 < 10-10 and P 013 < 2.5x10-8] = 9.12x10-9 

 Pr [P 0 < 2.5x10-8 and P 01 > 5x10-7 and P 013 < 2.5x10-8] = 1.52x10-8 

Here, P0, P01, P03, and P013 respectively denote the P-value combining data from Stage 0 only, 
Stages 0 and 1, Stages 0 and 3, and Stages 0, 1 and 3. Therefore, the total realised false positive 
rate (FPR) is 2.72x10-8 per SNP per phenotype. As we tested SBP and DBP, which are 
correlated phenotypes, this approach corresponds to an expectation, which is bounded above 
(conservatively) by 5.44 x10-8.  To illustrate the importance of taking into account the interim 
decisions, we calculate that simply declaring significance at P0123<5x10-8 for all SNPs at the 
end of stage 3, keeping all other assumptions the same, the realised FPR would have been 
5.33x10-8 per phenotype. 
To determine whether the previously reported association55at the PLCD3 locus was supported 
by all currently available data, we reasoned as follows: 
(i) In the meta-analysis of all available data, the SNP rs12946454 at this locus did not reach our 
pre-specified significance threshold accounting for our sequential design (final P03=4.35x10-8 
for SBP; see Supplementary Table 4). It is not appropriate to compare this against a classical 
P<5x10-8 threshold because this is one of the SNPs for which follow-up genotyping was not 
carried out because of the small P-value at the end of stage 0. 
(ii) Restricting the analysis to data newly acquired for this study (and previously not reported), 
there is no support for association of rs12946454 (P=0.02 for SBP and P=0.15 for DBP in 
~48,000 individuals, which are not significant after adjusting for the 36 loci followed up). 

5. Expression SNP-blood pressure analysis 
For each of the 29 sentinel genome-wide significant blood pressure SNPs (Table 1 and 
Supplementary Table 5), all proxy SNPs with r2>0.8 were identified in HapMap CEU (releases 
21, 22, and HapMap 3 vers. 2) using SNAP92.  All index SNPs and their proxies were then 
looked up in a database of expression SNP (eSNP) results from the following tissues: fresh 
lymphocytes93, fresh leukocytes94, leukocyte samples in individuals with celiac disease95, 
lymphoblastoid cell lines (LCL) derived from asthmatic children96, HapMap LCL from 3 
populations97, a separate study on HapMap CEU LCL98, peripheral blood monocytes99, 
adipose117 and blood samples100,101, 2 studies on brain cortex99,102, 3 large studies of brain 
regions including prefrontal cortex, visual cortex, and cerebellum (Emilsson, personal 
communication), liver103, osteoblasts104, and additional fibroblast, T cell and LCL samples105. 
The collected eSNP results met criteria for statistical significance for association with gene 
transcript levels as described in the original papers. The index BP SNP (Supplementary Table 
6A) or the best proxy SNP (Supplementary Table 6B) that is also an eSNP, and each of its 
eSNP associations, are reported, along with the strongest known eSNP (regardless of BP 
association) for each transcript in tissues showing BP association at that eSNP locus. 
A selection of transcripts from some previously identified BP GWAS loci were measured by 
reverse transcriptase-polymerase chain reaction (RT-PCR) in RNA from leukocytes and 
platelets from 1,800 Framingham Heart Study offspring cohort (examination cycle 8) 
participants as previously described106. A targeted set of SNPs was genotyped by a custom 
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Illumina iSelect panel that included BP index SNPs and previously reported eSNPs at the RT-
PCR loci)55,91,107. 

In examining cis-expression associations, either based on genome-wide expression surveys or 
RT-PCR and regional SNP analysis, we define coincident associations as those where the 
strongest BP SNP at a locus was also the strongest known eSNP for at least 1 transcript at the 
locus. We highlight 5 such loci in Table 6A.  There is a potential for confounding by linkage 
disequilibrium, such that SNP associations detected through GWAS (whether to transcript level 
or BP) are more likely to occur for SNPs in LD with many SNPs.  One cannot exclude the 
possibility that a given BP index SNP is associated also with levels of a given transcript, but 
that there is no causal relationship between the transcript level and BP. 

6. Non-synonymous SNP look ups 
We searched for all non-synonymous SNPs that were in high LD (r2>0.8 in 1000 Genomes 
Low Coverage Pilot CEU phased haplotypes, available from ftp://ftp.1000genomes.ebi.ac.uk) 
with one of the 29 index genome-wide significant blood pressure SNPs (Table 1 and 
Supplementary Table 5). Results are presented in Supplementary Table 7. 

7. Metabolomic and lipidomic analyses 
To identify candidate mechanisms that might mediate associations with BP, the 29 BP-
associated SNPs were tested for association with levels of circulating serum metabolites.  For 
this purpose, results from three NMR-based metabolomic studies were meta-analyzed with 
total sample size N=7,032, and (separately) results from five mass spectrometry-based 
lipidomic studies were meta-analyzed with total sample size N=4,023. 
The three metabolomics studies comprised 4,703 individuals from the Northern Finland Birth 
Cohort 1966 (NFBC1966, see Section 1.59) genotyped using the Illumina CNV370-Duo DNA 
Analysis BeadChip, 1,904 individuals from the Cardiovascular Risk in Young Finns Study 
(YFS, see Section 1.81) genotyped using a customized Illumina 670 BeadArray108, and 425 
individuals from the Dietary, Lifestyle, and Genetic determinants of Obesity and Metabolic 
syndrome (DILGOM) study, consisting of unrelated Finnish individuals, aged 25–74 years 
from the Helsinki area109, recruited in 2007 as an extension of the FINRISK 2007 study, 
genotyped using the Illumina 610-Quad SNP array (Illumina Inc., San Diego, CA, USA), using 
standard protocols.  Each of these studies measured levels of circulating metabolites in fasting 
serum samples, all analysed using the same high throughput proton NMR platform.  This 
methodology provided information on 138 serum measures including lipoprotein subclass 
distribution and lipoprotein particle concentrations, low-molecular-weight metabolites such as 
amino acids, 3-hydroxybutyrate, and creatinine, and detailed molecular information on serum 
lipids including free and esterified cholesterol, sphingomyelin, (poly)(un)saturated and ω -3 
fatty acids.  Further details of the NMR spectroscopy and metabolite quantification have been 
described previously101,110.  All three studies imputed genotypes at unmeasured SNPs using 
standard hidden Markov model methods and HapMap CEU reference panels.  Individuals 
missing BP or on lipid-lowering medication and pregnant women were excluded from the 
analyses.  The analyses were adjusted for sex, BMI, age (in YFS and DILGOM) and for the 
first ten principal components from the genome-wide data to account for population structure. 
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The residuals were transformed by inverse normal transformation to normal distributions for 
each cohort separately and tested for associations with the 29 BP-associated SNPs. Effect size 
estimates from the three cohorts were combined using inverse variance weighted meta-analysis 
using the R statistical package. 

The five lipidomics studies were conducted in five genetically diverse European populations: 
the Erasmus Rucphen Family (ERF) study (see Section 1.25), the MICROS study (see Section 
1.55), the Northern Swedish Population Health Survey (NSPHS; see Section 1.62), the Orkney 
Complex Disease Study (ORCADES; see Section 1.63) and the CROAS (VIS) study (see 
Section 1.78).  For all five studies, participants were not selected on the presence of lipid-
related or other pathology.  A total of 4,023 individuals had both genotype data and lipidomic 
measurements available. The lipidomic measurements were all conducted at the Institute of 
Clinical Chemistry and Laboratory Medicine of Regensburg University, Germany, using 
electrospray ionization tandem mass spectrometry (ESIMS/MS), as validated and described 
previously111,112.  In brief, samples were analysed by direct flow injection using a precursor ion 
scan of m/z 184 specific for phosphocholine containing lipids including phosphatidylcholine 
(PC), sphingomyelin (SM)112 and lysophosphatidylcholine (LPC)111. A neutral loss scan of m/z 
141 was used for phosphatidylethanolamine (PE) 113 and PE-based plasmalogens (PE-pl) were 
analysed according to the principles described by Zemski-Berry114. Fragment ions of m/z 364, 
380 and 382 were used for PE p16:0, p18:1 and p18:0 species, respectively. Quantification was 
achieved by calibration lines generated by addition of naturally occurring lipid species to 
plasma and internal standards belonging to the same lipid class (PC14:0/14:0, PC 22:0/22:0, 
PE 14:0/14:0, PE 20:0/20:0, LPC 13:0, LPC 19:0). Calibration lines were generated for the 
following naturally occurring species: PC 34:1, 36:2, 38:4, 40:0 and PC O 16:0/20:4; LPC 
16:0, 18:1, 18:0; PE 34:1, 36:2, 38:4, 40:6 and PE p16:0/20:4. Correction of isotopic overlap of 
lipid species as well as data analysis was performed by self-programmed Excel macros for all 
lipid classes according to the principles described previously112. The performed analysis does 
not always allow an exact assignment. In this case, an “O” is added to the subspecies name, 
e.g., PC O 36:5 and PC O 32:1. This denotes that the two species are most likely be assigned to 
PC species containing an ether bond (alkyl) and may constitute plasmalogens. However, we 
cannot exclude the possibility that PC O 36:5 may be assigned to PC 35:5, an unlikely odd 
carbon number species. Similarly, PC O 32:1 may be assigned to PC31:1.  Persons with 
measurements more extreme than +/-4 standard deviations from the mean were excluded from 
further analysis.  Measurements were first adjusted for age and sex, and residuals that were not 
normally distributed were inverse normal transformed prior to association analysis. 

Genotyping platforms and imputation methods were identical to those used for the BP 
association analyses (see Supplementary Table 2).  As all of the studies included related 
individuals, testing for association between (residual) lipid level and allele dosage was 
performed using a mixed model by ‘mmscore’ option in GenABEL software115. This option 
combines the Family Based Score Test for Association (FASTA) method of Abecasis et al.116 
and kinship matrix estimated from genotyped SNPs117. Effect size estimates from the five 
studies were meta-analyzed using inverse variance weighting using METAL software118. 
Multiple testing-corrected significance levels were calculated using a Bonferroni correction for 
4,031 tests (139 metabolites times 29 SNPs). 
Testing the 29 BP index SNPs for association with these panels of metabolites failed to identify 
any metabolites that might mediate causal effects, after Bonferroni correction for multiple 
testing for the 138 and 139 metabolites examined in each dataset respectively (see 
Supplementary Table 9). 
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8. CNV analyses 
We obtained lists of CNV tagging SNPs (CNV-tSNPS) from four sources:  (i) 261 CNV-
tSNPs, which tag CNVs at r2 > 0.8, generated at the Broad Institute by typing HapMap samples 
on the Affymetrix 6.0 array119.  (ii) 2,174 CNV-tSNPs, which tag CNVs at r2 > 0.8, made 
available by the Genomic Structural Variation consortium and based largely on typing 450 
HapMap samples on a custom-made Agilent 105K array capable of genotyping ~3,320 CNVs 
in HapMap CEU120. (iii) 3,113 CNV-tSNPs, generated using HapMap phase III samples 
genotyped using Affymetrix 6.0 and Illumina 1M arrays, generated by the HapMap 3 project 
(http://hapmap.ncbi.nlm.nih.gov/). (iv) 2,905 CNV-tSNPs, generated using ~19,000 samples of 
European ancestry genotyped by the Wellcome Trust Case Control Consortium (3,000 controls 
and 2,000 cases for each of 8 diseases)121, using a custom-made Agilent 105K array 120. By 
combining these lists (without excluding multiple CNV-tSNPs that tag the same CNV), we 
identified 6,378 CNV-tSNPs for which we had meta-analysis association statistics for SBP and 
DBP.  For these SNPs, we applied a simple Bonferroni corrected threshold of P < 0.05/6378, 
after genomic control was applied genome-wide to all meta-analysis association P-values. 
Only CNV tSNP rs6599167 was significantly associated with DBP (P=9.3x10-7, r2=0.77 with 
our index SNP rs3774372 at the ULK4 locus).  The tagged CNV is rare compared to the 
tagging SNP (rs6599167 MAF=0.18, CNV MAF=0.018) and is poorly tagged by any HapMap 
SNP (maximum r2=0.090).  Further exploration would require directly genotyping the CNV 
and testing for association with DBP in large sample sizes. 

9. MAGENTA analyses 
To test whether the overall genome-wide association results were enriched for members of 
specific biological pathways, we used the gene set enrichment framework MAGENTA v2.1122 
to calculate a corrected gene association P-value based on the most significant SNP association 
P-value of all SNPs in the gene region (defined as 110 kb upstream to 40 kb downstream from 
transcript start/stop).  MAGENTA corrects values for gene size, number of SNPs/gene, and 
recombination.  Results were tested against databases within MAGENTA v2.1 including: 
KEGG (from June 2008), PANTHER Biological Processes (from Jan. 2010), PANTHER 
Molecular Function (from Jan. 2010), and Ingenuity Pathway (from June 2008).  For each 
pathway, enrichment of highly ranked gene scores above the 95th percentile of all gene scores 
in the meta-analyses was evaluated compared to 10,000 randomly sampled gene sets of 
identical size from the genome. 
Analysis was performed for the meta-analysis results for DBP and SBP.  Additionally, to 
examine whether common factors might be present across the two analyses, an analysis was 
performed using the minimum p-value for each SNP of the DBP and SBP results.  
Supplementary Table 10 shows the results for pathways with a nominal P-value less than 0.01. 
This highlights some biological categories which could fit with processes linked with blood 
pressure. However, given the number of categories tested in each database, the nominal GSEA 
P-values might best be compared against the following Bonferroni corrected P-values to 
control the false positive rate for each individual database: Ingenuity pathways P < 0.0005, 
KEGG pathways P < 0.0003, PANTHER BioProc P < 0.0002, PANTHER MolFunc P < 
0.0002, PANTHER pathways P < 0.0004). A further 15-fold multiple testing correction could 
additionally be applied, because three sets of GWAS results were used (DBP, SBP, best of 
DBP and SBP) and five databases were used. 
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10. Risk score analyses using multi-SNP predictors 
We defined genetic risk scores in the following way: Using a set of m SNPs, for the i-th SNP in 
the j-th individual denote xij as the 0/1/2 coded genotype (for directly genotyped SNPs) or 
expected allele dosage (which takes real values between 0.0 and 2.0 for imputed SNPs). Using 
results from Stages 0-3, define the set of regression coefficients to be w1, w2, ..., wm. Then the 
risk score for subject j is defined to be 
 (1) sj = s0 + w1 x1j + w2 x2j + ... + wm xmj, 

where s0 is the intercept.  In all our analyses, we specify the coefficients w1, w2, ..., wm to be the 
effect sizes, in mmHg per coded allele, estimated in single SNP analyses of both SBP and DBP 
in stages 0.  For a risk score based on mean BP (defined as (SBP+DBP)/2), we used 
coefficients (wi

(SBP) + wi
(DBP))/2, where  wi

(SBP) and wi
(DBP) are the observed effect of the i-th 

SNP on SBP and DBP, respectively (this can be motivated formally by appealing to the 
linearity of both addition and expectation). 
We also note that, when considering multiple SNPs that are in linkage equilibrium with each 
other, and small effect sizes per SNP, effect sizes estimated jointly for all SNPs using a 
multiple regression model are effectively identical to those estimated in a series of single SNP 
regression models. Thus regression on the risk score can be reconstructed from regressions on 
each of the m SNPs in turn, without further access to individual-level data. 
The calculations involved are of the same type as for meta-analysis; the coefficient of the risk 
score is a weighted mean of the per-SNP regression coefficients, where each is weighted by its 
corresponding wi. The estimated variance of the risk score is given by similarly weighting the 
estimated variances (squared standard errors) of each per-SNP regression coefficient. The 
assumption of zero LD between SNPs ensures that these contributions are independent. 
Importantly, as with inverse-variance weighted meta-analysis, in large samples this procedure 
gives valid p-values under the null, i.e. when there is no relationship between the “lookup” 
phenotype and any variants at the SNPs contributing to the risk score. 
Using SNP-specific results in this way, we estimated and tested the coefficient of the risk score 
in independent “lookup” results using linear regression for continuous phenotypes, logistic 
regression for binary phenotypes, and proportional hazards regression for time-to-event 
phenotypes. These estimates and tests inherit the covariate adjustment performed in the 
original SNP-specific analysis. 

11. Consortia and studies providing association results for non-BP 
phenotypes and HTN 
We obtained summary phenotype-genotype association results for up to 30 SNPs of interest, by 
requesting "look-ups" in the results of meta-analyses and analyses that had already been 
conducted by consortia and research groups studying non-BP phenotypes. We also obtained 
phenotype-genotype results for hypertension from the WGHS (see Section 1.79) and the 
BRIGHT study.  
In this section, we summarise relevant information about cohort recruitment and ascertainment, 
methods of phenotype measurement, phenotype definitions for case/control phenotypes, and 
phenotypic covariates used in the association analyses.  We do not present technical details, 
such as the choice of genotyping platform or genotype imputation methodology, or which extra 
covariates were used to control for population stratification, when these are already 
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documented in the published literature.  Briefly, almost all genotyping was performed using 
standard GWAS arrays, genotype imputation was performed using hidden Markov model 
approaches with a HapMap CEU reference panel, and ancestry principal components86 or 
location-of-origin were used as covariates and/or variance components were used to adjust for 
familial relatedness in the individual analyses. 

11.1 BRItish Genetics of HyperTension study (BRIGHT) 
We obtained association data for 28 SNPs directly genotyped using the KASPAR assay and 
one perfect proxy SNP genotyped using the HumanCVD BeadChip (Illumina) in the BRIGHT 
study which includes hypertensive cases selected from families with more than one affected 
sibling and normotensive controls123. There was no overlap with samples used for the ICBP-
GWAS discovery analysis. Hypertensive cases had a diagnosis of hypertension prior to 50 
years, and BP recordings ≥ 150/100mmHg on a single reading or ≥ 145/95mmHg on 3 
consecutive readings. Normotensive controls had blood pressure recordings of SBP ≤ 
140mmHg and DBP ≤ 90mmHg and were not taking any anti-hypertensive medications and 
were recruited from similar geographical regions as the cases. Blood pressure was measured in 
both cohorts using the Omron-705CP blood pressure monitor. After QC exclusions the sample 
analyzed comprised 2,406 hypertensive cases and 1,990 normotensive controls. 

11.2 CHARGE - Heart Failure Working Group 
We obtained association data for SNPs of interest from the meta-analysis of 4 cohorts with a 
total of 20,926 participants free of clinical heart failure at baseline, in whom 2,526 incident 
heart failure events occurred during follow-up124. All cohorts included in the heart failure 
analysis are also included in the ICBP-GWAS discovery analysis. 

11.3 EchoGen (LM mass and LV weight) 
Association statistics for left ventricular (LV) mass and LV wall thickness (LV mass) were 
obtained from the discovery meta-analysis described previously125.  The discovery analysis for 
this study combined data from 5 cohorts with total sample size N=12,612.  Four of the cohorts, 
CHS, RS, KORA F3, FHS, with total N=9,312, overlap those used for the ICBP-GWAS 
discovery analysis. 
Subjects underwent routine transthoracic echocardiography, and methodology for measurement 
of LV dimensions, and calculation of mass and wall thickness, have been reported 
previously125. Within-cohort association analyses regressed LV mass and LV wall thickness 
onto additively coded (expected) genotype dose, with age, sex, height and weight as covariates, 
using linear regression (with random effects to account for relatedness where necessary).  
Results were combined across cohorts using an inverse variance weighted meta-analysis. 

11.4 NEURO-CHARGE (stroke) 
Association statistics for risk of incident stroke were obtained from the discovery meta-analysis 
of the CHARGE consortium, as described previously126.  The discovery analysis for these 
phenotypes combined data from 4 cohorts with total sample size N=19,602, of which there is 
100% overlap the ICBP-GWAS discovery samples. 
For the stroke analysis, individuals who were stroke-free at recruitment were followed up for 
an average of 11 years, and there were 1,544 incident strokes (of which 1,164 were ischemic 
strokes).  The association analysis was a survival (time-to-event) analysis using a proportional 
hazards model, adjusted for age and sex as covariates. 
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11.5 UK-US Stroke Collaborative Group 
A total of 2,957 subjects were included in the study of an association with ischemic stroke 
(1,473 cases and 1,484 controls). Cases came from the BRAINS (N=435), SWISS (N=296), 
and ISGS (N=742) studies; the controls came from ISGS and Coriell (N=782) and the 
Baltimore Longitudinal Study of Aging (BLSA, N=702).  Probands from SWISS were 
extracted from family groups. 

The British Repository of DNA in Stroke (BRAINS) is an on-going multi-centre, hospital-
based prospective study from the UK127. All recruits were extensively clinically phenotyped 
and have imaging-confirmed ischaemic stroke using either CT or MRI brain scans. BRAINS 
has a number of spokes including BRAINS-SA (South Asian) which recruits British Asian 
stroke patients and BRAINS-Euro recruiting stroke patients of European descent. For the 
purposes of this study samples were selected from BRAINS-Euro. 

Siblings with Ischemic Stroke Study (SWISS) is a prospective multicenter affected sibling pair 
study of first-ever or recurrent ischemic stroke128. Subjects were recruited from 54 enrolling 
hospitals across the US and Canada. All recruits were extensively clinically phenotyped and 
have imaging-confirmed ischaemic stroke using either CT or MRI brain scans. Samples were 
collected between October 2000 and December 2009.  
Ischemic Stroke Genetics Study (ISGS) is a 5-center prospective case-control study of first-
ever ischemic stroke cases and concurrently enrolled controls individually matched for age, sex 
and recruitment site129. Samples were collected between May 2003 and September 2008. 
No UK-US SCG stroke cases have overlap with samples used for the ICBP-GWAS discovery 
analysis. 
Controls utilized in this study are ISGS controls (no overlap with ICBP-GWAS discovery 
analysis), neurologically normal controls from Coriell130 (no overlap with ICBP-GWAS 
discovery analysis), and participants of the Baltimore Longitudinal Study of Aging (BLSA, 
which overlapped N=702 samples used for the ICBP-GWAS discovery analysis). The controls 
for the present analysis were restricted to individuals with no known first degree relatives with 
stroke or other neurological disease. 
Cases were genotyped using Illumina 650K Quad arrays at the Department of Molecular 
Neuroscience and Reta Lilla Weston Laboratories, Institute of Neurology, University College 
London. Controls were genotyped using Illumina 550Kv1 or 550Kv3 arrays at the Laboratory 
of Neurogenetics, National Institute on Aging, NIH (Bethesda, MD). Individuals > ± 6 SD 
from the mean European ancestry estimates for a combined CEU/TSI sample, after multi-
dimensional scaling analyses for component vectors 1 and 2 were excluded. Cryptic 
relatedness was filtered using pair-wise proportional sharing estimates of < 0.15 for inclusion, 
effectively removing duplicates, first and second-degree relatives.  Samples with call rate 
<0.95 and samples discordant between genotypic sex estimated from X chromosome 
heterogeneity and self-reported sex were excluded.  Final sample size was 1,473 cases and 
1,484 controls. 

SNPs were filtered for call rate≥ 0.95, MAF > 0.01, HWE p-value > 10-7 before imputation to 
remove likely genotyping errors.  Imputation was conducted using MaCH 1.0.16 using phased 
HapMap CEU haplotypes from the 1000 genomes August 2009 release from Sanger 
Association analyses were conducted assuming a logistic regression model, adjusted for 
component vectors 1 and 2 from a multi-dimensional scaling analysis of the case/control 
samples with allele dosage at each SNP as a predictor of stroke (using MaCH v 1.0.16 for 
imputed SNPs and PLINK v 1.07 for genotyped SNPs).  Genome-wide, association statistics 
had a genomic control lambda of 1.0268. 
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11.6 CARDIoGRAM (CAD) 
The Coronary ARtery DIsease Genome-wide Replication And Meta-analysis 
(CARDIoGRAM) consortium combines data from 14 GWAS, all published and several 
unpublished, in individuals with European ancestry including >22,233 cases with CAD and/or 
MI and >64,762 controls, and unifies samples from Atherosclerotic Disease VAscular functioN 
and genetiC Epidemiology study, CADomics, Cohorts for Heart and Aging Research in 
Genomic Epidemiology, deCODE, the German Myocardial Infarction Family Studies I, II, and 
III, Ludwigshafen Risk and Cardiovascular Heath Study/AtheroRemo, MedStar, Myocardial 
Infarction Genetics Consortium, Ottawa Heart Genomics Study, PennCath, and the Wellcome 
Trust Case Control Consortium (WTCCC). These studies have a case-control design or are 
prospective cohort studies both having detailed phenotyping for CAD and/or MI as previously 
described131,132. Control subjects have been derived from population-based studies in most 
investigations. 2,287 cases and 22,024 controls from the CHARGE consortium, 1,121 controls 
from MIGen, and 1,473 controls from B58C used by the WTCCC, overlap samples used in the 
ICBP-GWAS discovery analysis. 
For all of the participating studies, genome-wide scans were performed in the years 2006-2009 
using either Affymetrix or Illumina platforms followed by imputation of genotypes in most 
studies. Statistical methods have been standardized across the studies, and an analysis platform 
has been created to allow summarized analyses on CAD, MI, and related phenotypes. Data 
were combined across all studies (prevalent CAD case/control comparisons).  Overall 
prevalence of MI within the CAD cases was 66%. 

11.7 C4D Consortium (CAD) 
The C4D consortium comprises CHD cases and controls of European origin from 
PROCARDIS and the Heart Protection Study (HPS) and of South Asian origin from the 
LOLIPOP and PROMIS studies133. Data analyzed with respect to risk of CHD all relate to the 
European origin participants from PROCARDIS and HPS. The PROCARDIS study included 
5,720 cases of CHD (74.9% male, 80.4% myocardial infarction) and 1,684 controls recruited 
from Germany, Italy, Sweden and the UK.  The controls were supplemented with N=2,697 
unselected individuals provided from the National Blood Service and used as common controls 
by the WTCCC.  Many of the PROCARDIS cases are related to each other, and familial 
clustering was accounted for by using robust sandwich estimation of the variance, using Stata v 
10. 

The HPS included 2,704 CHD cases included in the HPS trial24 and 2,887 controls from the 
1958 Birth Cohort. The HPS was a large clinical trial of patients with either (i) CAD (i.e., MI, 
unstable or stable angina, coronary artery bypass grafting, or angioplasty); or (ii) occlusive 
disease of non-coronary arteries (i.e., stroke, leg artery stenosis; or (iii) diabetes mellitus; or 
(iv) treated hypertension (if also male and aged 65 or older). A total of 20,536 individuals 
(15,454 men and 5,082 women) were recruited.  Previous MI was reported by 8,510, some 
other history of CAD by 4,876, and no history of CAD by 7,150.  Among the 13,386 with 
known CAD, 1,460 had cerebrovascular disease, 4,047 had peripheral arterial disease, and 
1,981 had diabetes mellitus.  GWAS genotyping was performed for a random sample of 4,000 
participants with sufficient DNA and complete phenotypic information, and of these there were 
2,704 CAD cases after quality control exclusions. 
No CAD cases used by C4D overlapped samples used for the ICBP-GWAS discovery analysis, 
but N=795 controls from PROCARDIS did overlap samples used for the ICBP-GWAS 
discovery analysis. 
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11.8 CKDGen 
Association statistics for estimated glomerular filtration rate (eGFR) were obtained from the 
discovery meta-analysis of the CKDGen consortium, as described previously134.  eGFR was 
calculated from calibrated creatinine using the 4-variable MDRD Study equation. The 
discovery analysis for these phenotypes combined data from 20 cohorts with total sample size 
N=67,093.  14 of the cohorts: AGES, Amish, ARIC, BLSA, CHS, 1,300 samples from ERF, 
FHS, KORA F3, MICROS, ORCADES, RS, RSII, SHIP and Vis, with total N=39,361, overlap 
the cohorts used for the ICBP-GWAS discovery analysis.  Association statistics for 
dichotomous chronic kidney disease (CKD), urinary albumin/creatinine ratio (UACR), and 
dichotomous microalbuminuria, were obtained in collaboration with the CKDGen consortium 
by querying their datasets. CKD was defined as eGFR <60 ml/min/1.73m2, in the same set of 
samples in which eGFR was studied.  The discovery analysis for urinary albumin/creatinine 
phenotypes combined data from 12 cohorts with total sample size N=31,580.  12 of the 
cohorts, Amish, ARIC, BLSA, CHS, CoLaus, EPIC, Fenland, FHS, KORA F3, MICROS, 
NSPHS, and SHIP, with total N=30,342, overlap cohorts used for the ICBP-GWAS discovery 
analysis. Microalbuminuria was defined as UACR >25 mg/g [women] or >17 mg/g [men]. For 
CKD there were 5,807 cases and 61,286 controls available. For microalbuminuria 3,698 cases 
and 27,882 controls were used.  eGFR and urinary albumin/creatinine ratio were (natural) log 
transformed prior to analysis.  Within-cohort association analyses regressed phenotype on 
genotype using an additive genetic model with age and sex as covariates, using linear 
regression for continuous phenotypes and logistic regression for dichotomous phenotypes.  
Family-based methods were used where relevant.  Results were combined across cohorts using 
an inverse variance weighted meta-analysis. 

11.9 KidneyGen consortium 
Association statistics for serum creatinine were obtained from the discovery meta-analysis of 
the KidneyGen consortium, as described previously135.  The discovery analysis for this study 
combined data from 9 cohorts, with total sample size N=23,812.  Six cohorts, CoLaus, 
SardiNIA, 873 samples from TwinsUK, Fenland, InCHIANTI, NFBC1966, with total sample 
size N=17,699, overlap the cohorts used for the ICBP-GWAS discovery analysis. 

Serum creatinine concentrations were log10 transformed prior to analysis.  Within-cohort 
association analyses were linear regressions of transformed serum creatinine on genotype, 
using an additive genetic model with age, sex and ancestry principal components as covariates. 
Results were combined across cohorts using a standard inverse variance weighted meta-
analysis.  Effect sizes were converted to a natural log transformed scale for presentation in 
Table 2 and Suppl. Table 14, for comparability with other phenotypes. 

11.10 Heart and Vascular Health Study   
The setting for this study was Group Health (GH), a large integrated health care system in 
western Washington State.  Data were utilized from an ongoing case-control study of incident 
myocardial infarction (MI) and stroke cases with a shared common control group.  Methods for 
the study have been described previously136-138 and are briefly summarized below. All study 
participants were GH members and aged 30-79 years. MI and stroke cases were identified from 
hospital discharge diagnosis codes and were validated by medical record review. Controls were 
a random sample of GH members frequency matched to MI cases on age (within decade), sex, 
treated hypertension, and calendar year of identification. The index date for controls was a 
computer-generated random date within the calendar year for which they had been selected.  
For MI cases, the index date was the date of admission for the first acute MI. Participants were 
excluded if they were recent enrollees at GHC, had a history of prior MI or stroke, or if the 
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incident event was a complication of a procedure or surgery. Eligibility and risk factor 
information were collected by trained medical record abstractors from a review of the GH 
medical record using only data available prior to the index date and through a telephone 
interview.  Medication use was ascertained using computerized GH pharmacy records. There is 
no overlap between these samples and those used for the ICBP-GWAS discovery analysis. 
Genotyping was performed at the General Clinical Research Center's Phenotyping/Genotyping 
Laboratory at Cedars-Sinai using the Illumina 370CNV BeadChip system. Genotypes were 
called using the Illumina BeadStudio software. Samples were excluded from analysis for sex 
mismatch or call rate < 95%. The following exclusions were applied to identify a final set of 
301,321 autosomal SNPs: call rate < 97%, HWE P < 10-5, > 2 duplicate errors or Mendelian 
inconsistencies (for reference CEPH trios), heterozygote frequency = 0, SNP not found in 
HapMap, inconsistencies across genotyping batches. Imputation was performed using 
BIMBAM with reference to HapMap CEU using release 22, build 36 using one round of 
imputations and the default expectation-maximization warm-ups and runs.  Logistic regression 
was used to assess the association of each SNP with stroke and MI, adjusting for the matching 
factors of age, sex, hypertension status and index year. We used an additive model for 
genotype, robust standard errors, and estimated risk for each additional copy of the variant 
allele. All analyses were implemented in R.  SNPs with variance on the allele dosage ≤0.01 
were excluded from analysis. There were 1,172 MI cases and 1,314 controls; the stroke 
analysis included 501 ischemic stroke cases and 1,314 controls. The genomic control lambda 
was 1.05 for MI and 1.07 for stroke. 

11.11 Women's Genome Health Study (WGHS) 
Samples, phenotyping, and genotyping are described above in Section 1.79.  There is no 
overlap with the samples used in the ICBP-GWAS discovery analysis139. 

12. Analyses of SNPs not reaching genome-wide significance 
We tested for evidence of association with SBP and DBP for sets of SNPs that did not reach 
the significance thresholds required for validation genotyping in the present study.  To achieve 
this, we constructed cohort-wise partitions of our principal GWAS dataset (with N=69,899 
individuals), to make pairs of non-overlapping discovery and validation datasets.  We 
constructed these partitions such that the discovery dataset constituted ~50%, ~60%, ~70% and 
~80% of the sample size while the validation dataset constituted the remainder of the sample 
size.  For each target partition size, we used a Monte Carlo algorithm to identify 50 distinct 
cohort-wise partitions that were as close as possible to the target partition proportions.  For 
each partition we performed separate meta-analyses within the discovery and validation 
datasets, using identical methodology to our principal meta-analysis (Section 3). 
SNPs were ranked by association P-values in each discovery meta-analysis and aggressive LD-
based pruning was used to remove all SNPs in pair-wise LD r2 > 0.05 with any SNP with a 
smaller P-value.  This procedure defined sets of effectively independent SNPs with discovery 
P-values in predefined intervals: P ≤ 10-7, 10-7 < P ≤ 10-6, .... , 10-3 < P ≤10-2, such that SNPs 
included in any given discovery P-value interval are not included if they are in linkage 
disequilibrium with SNPs with more significant discovery P-values.  For each set of SNPs we 
defined a linear predictor using coefficients that were effect size estimates from the discovery 
dataset, and then regressed the phenotype onto this predictor in the non-overlapping testing 
dataset, using the method described in Section 10. 
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As an empirical negative control for our approach, we defined phenotypic predictors with 
SNPs and coefficients determined from analyses of alternative phenotypes not directly related 
to blood pressure. In place of meta-analysing discovery sets from ICBP-GWAS, we used the 
meta-analysis results of Kathiresan et al.140 for each of three lipid phenotypes. We used only 
the validation sets from ICBP-GWAS that contained independent samples to the ones used by 
Kathiresan et al.140 (which for 20% of the total ICBP-GWAS sample size was 8/50 distinct 
partitions). We found that the lipid phenotype-derived predictors explained relatively little of 
the variation (<1%) in blood pressure, and no predictors were significantly associated after 
accounting for multiple testing (largest 2 ln L = 6.09, p = 0.24 adjusting for 18 tests). 
In contrast, BP-derived predictors based on SNPs within all P-value bins were significantly 
associated with BP in the independent testing subsamples (P=6x10-5 to P=5x10-10 for 12 
independent 1 d.f. tests), as shown in Supplementary Figure 5.  This provides robust evidence 
for the existence of as yet undetected common variants among these SNPs. 

13. Estimating the number of as-yet undiscovered signals 
Our approach to estimating the total number of independent signals associated with continuous 
blood pressure phenotypes, and the total fraction of variance explained, is based on the 
approach described recently by Park et al.141. The underlying principle is as follows: For a set 
of signals detected in a discovery GWAS, data independent of the data used for discovery is 
free of bias caused by the winner’s curse effect, and therefore can be used to consistently 
estimate the true effect sizes. This allows consistent estimates of the power of the discovery 
GWAS to detect each of the signals that was detected. 
For details on these analyses, see Appendix A. 

14. Measurement of natriuretic peptides in Framingham and 
Finrisk97 
Measurements of brain natriuretic peptide (BNP) and N-terminal pro-atrial natriuretic peptide 
(pro-ANP) were obtained on Framingham Heart Study offspring cohort participants attending 
their sixth examination (1995-1998). Natriuretic peptide levels were measured with a high-
sensitivity, non-competitive immunoradiometric assay, based on a 2-site sandwich antibody 
system (Shionogi Co, Osaka, Japan). The lower limit of detection was 4 pg/mL for BNP and 94 
pmol/L for N-terminal pro-ANP. The sample size with BNP levels and genotype data was 
2,891 individuals. 
In the Finrisk97 sample, plasma BNP concentration was determined using the Abbott Architect 
BNP assay, with an inter-assay coefficient of variation of 4.3%.  Plasma N-terminal pro-ANP 
was determined using an immunoluminometric sandwich assay targeted against the mid-region 
of the peptide (BRAHMS, AG, Berlin, Germany), with an inter-assay coefficient of variation 
of 2.3%. The N-terminal pro-BNP was determined using the Roche Elecys assay, with an inter-
assay coefficient of variation of 1.4%. A total of 6,756 individuals were available with 
genotype and all natriuretic peptide measurements. 
The G allele of the index SNP in the current report at the MTHFR-NPPB locus was associated 
with lower SBP and DBP (Table 1), and with higher ANP levels (FHS P>0.05, FR97 
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P=7.9x10-46), BNP levels (FHS P=3.4x10-9, FR97 P=1.7x10-19) and N-terminal pro-BNP (FHS 
P=1.8x10-10, FR97 P=6.6x10-30). Opposite directional associations with BP and ANP/BNP 
levels are expected, and are consistent with ANP/BNP levels mediating the association with BP 
as a consequence of the vasodilatory and natriuretic properties of the peptide. 

15. Websites accessed 
Name Website Date accessed 
1000 Genomes 
Project Data 
Site 

ftp://ftp.1000genomes.ebi.ac.uk July 25th, 2010 

NHGRI 
GWAS 
catalogue 

http://www.genome.gov/gwastudies/  Last on 
November10th, 
2010 

PubMed http://www.ncbi.nlm.nih.gov/pubmed Last on April 28th, 
2011 

SNAP 
annotation and 
proxy tool 

http://www.broadinstitute.org/mpg/snap/ldsearchpw.php 
 

Last on 
November10th, 
2010 

UCSC 
Genome 
Browser 

http://www.genome.ucsc.edu Last on 
November10th, 
2010 

16. Supplementary Tables (see also file 
“ICBPresub4_SoMtables_final.xls”) 
Supplementary Tables 1 through 14 are presented in a separate file: 
“ICBPresub4_SoMtables_final.xls”. 

Supplementary Table 1: Demographic data of European-ancestry cohorts 

Demographic data on all European ancestry GWAS (stage 0) and follow-up (direct genotyping 
– stage 1 & 2 and lookup – stage 3) cohorts.  For each cohort the alias is indicated in column 1 
(see Supplementary Material for details on each study). Numbers of samples genotyped (N), 
basic descriptive statistics include mean (SD) for: age, systolic blood pressure (SBP), diastolic 
blood pressure (DBP), body mass index (BMI);  % HTN = % of individuals defined as 
hypertensive (SBP ≥ 140mmHg, or DBP ≥ 90mmHg, or taking anti-hypertensive or blood 
pressure lowering medication for any reason); % anti-HTN treat. = % of individuals taking 
anti-hypertensive medications. Standard deviations of the residual computed by regression of 
treatment corrected BP on age, age2, sex, and BMI and used in the association are given in 
column 10 and 11. Columns 13 and 14 show information used by the cohorts for adjustment of 
population stratification and sample relatedness (kinship).  Abbreviations; NA= non-
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applicable, PC and PCA= Principal Components and principal components analyses; IBS = 
identity by state. 

Supplementary Table 2: Genotyping and imputation methods 

Basic information on genotyping and imputation methods for each genome-wide study.  
Column 2 indicates if the study participated in the genome-wide scan (GWAS) or only 
replication SNPs were searched (lookup).  The commercial genotyping platform and the 
genotype calling algorithm are stated in columns 3 and 4. The different studies used similar, 
but slightly different criteria to filter the genotyping data before the imputation.  Information 
on the imputation is provided (software used, HapMap genotype freeze on which the 
imputation was based, and number of SNPs used). The last 6 columns indicate which software 
was used for association analysis and indicates the genomic control parameter for each 
phenotype used. 
HWE=Hardy-Weinberg equilibrium; MAF = minor allele frequency, NA = not available, 
imput. = imputation; ME = Mendelian error. 

Supplementary Table 3: GWAS results pruned by LD 

All SNPs having passed quality control with an association P-value of ≤9.85x10-6 for at least 
one of SBP or DBP were pruned to obtain a SNP list with independent SNPs (LD r2 <0.2).  For 
genotyping and other purposes, a proxy SNP (“target SNP”) rather than the SNP with the best 
association P-value (“sentinel SNP”) was chosen for follow-up in some cases.  If the sentinel 
SNP is in a gene, the alias name is indicated in column 6, together with all genes within a 
100kb window (column 7).  Position is given in hg18 coordinates. The distance from the 
closest SNP with lower P-value (“higher ranking SNP”) is indicated in column 8. If a proxy 
SNP for the sentinel SNP was chosen for follow-up, the target SNP identity is indicated in 
column 9 with the reason for choice indicated. The 3 last columns of the table indicate the 
number of phases of replication for the target SNP if the replication was successful and the 
locus name.  P-values indicated are corrected by genomic control within and between studies 
(see methods above). NA = not applicable. 

Supplementary Table 4: Staged validation results 

The table gives association statistics and sample sizes by stage and SNP. Because all SNPs 
genotyped in stage 2 progressed into stage 3 (Supplementary Figure 1), no interim analysis was 
conducted at completion of stage 2. 
* Index SNPs reaching our positive criteria for skipping further targeted genotyping (green 
boxes in Supplementary Figure 1), which were P0 ≤ 2.5 × 10−8 and previously published for 
stage 0, and P01 ≤ 10−10 for stage 1; + Index SNPs reaching our negative criterion for skipping 
further targeted genotyping (red box in Supplementary Figure 1), which was P01 > 5 × 10−7 for 
stage 1; AAF means All Assays Failed for targeted single SNP (non-array) genotyping; ** 
Index SNPs reaching our criterion for declaring genome wide significance, which was 
P0123 ≤ 2.5 × 10−8. 
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Supplementary Table 5: Summary of newly discovered or previously reported 
loci 

Summary association statistics for all 28 newly discovered and previously reported loci55,91.  
Although the overall P-value for rs12946454 (PLCD3) achieves P ≤ 5x10-8, the data 
summarized here were acquired via a sequential experiment that technically invalidates 
classical thresholds for genome wide significance.  Comparison against a more appropriate 
threshold (P ≤ 2.5x10-8; see Section 4) and consideration of the fact that the overall P-value is 
less significant with the inclusion of newly acquired data in N=30,174 individuals, suggest that 
this association should not be considered to be well validated. Genomic positions are given in 
build 36 coordinates. Abbreviations: Cod. all.=coded allele. 

Supplementary Table 6: eSNP evidence 

All BP index SNPs and their proxies were searched against eSNP sources as described in the 
Supplementary Materials (Section 5). Only the eSNP with the lowest BP P-value is shown 
here.  Supplementary Table 6A: 9 BP index SNPs that are eSNPs based on genome-wide eQTL 
studies. Supplementary Table 6B: 3 eSNPs from genome-wide surveys that are in high LD 
with a proxy of BP index SNPs. Supplementary Table 6C: BP index SNPs that show evidence 
as being eSNPs using RT-PCR measurement of selected transcripts at several associated loci.  
†Proxy SNPs with r2>0.8 to the sentinel SNPs were identified in HapMap CEU (releases 21, 
22, and HapMap 3 vers. 2) using SNAP92.  ‡ The lowest blood pressure P-value for the eSNP 
for either SBP or DBP after genomic control adjustment is listed.  * A BP-eSNP relationship 
for this locus was previously reported91. n/a means not available.  ¥ Measured by RT-PCR in a 
separate set of experiments106. 

Supplementary Table 7: Non-synonymous SNP lookups 

For all 29 genome-wide significant loci, we determined whether either the index SNP, or a 
proxy with r2>0.8, estimated in 1000 Genomes haplotype data for the CEU panel, resulted in 
non-synonymous changes in amino acids within the translated protein sequence for 
corresponding genes. 

Supplementary Table 8: Sex- and BMI-interaction results 

For the 29 significant SNPs from the main effect analysis, a sex-by-SNP and BMI-by-SNP 
interaction analysis was performed.  Datasets with unrelated individuals were analyzed in strata 
by sex, with the sex*SNP interaction beta and SE estimated from within the strata, coding male 
= 1 and female = 2 (betainteraction=betamale - betafemale; SEinteraction=√(SEmale

2+(SEfemale
2)). The 

analyses were analogous for BMI, coding BMI< 25 = 0 and BMI ≥ 25 = 1.  For studies that 
included related individuals the following regression was performed and the interaction term 
extracted (e.g. SBP ~ sex*W + age*W + (age2)*W + ... + G + W + G:W; e.g. DBP ~ BMI*S + 
age*S + (age2)*S + ... + G + S + G:S). 

Supplementary Table 9: Results of the metabolomic/lipidomic lookups 

Association of BP-associated SNPs with metabolic levels in a meta-analysis of the 
NFBC1966/YFS/DILGOM studies (upper section) and a meta-analysis of five EUROSPAN 
studies (lower section). Results are shown only for SNP-metabolite combinations with multiple 
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testing adjusted association P < 1, along with short and full names of the metabolite, effect size 
and standard error. 

Supplementary Table 10: MAGENTA analyses 

Genes near the top 29 SNPs of three phenotypes (SBP, DBP, and the minimum of SBP and 
DBP) were tested for the over-representation with genes from known pathways using three 
gene-set databases.  The most significant biological pathways and genes are shown for each 
phenotype, the nominal P-value and the P-value after correction for false discovery are 
indicated in columns 6 and 7. 

Supplementary Table 11: Demographic data of non-European ancestry cohorts 

Demographic data on all non-European ancestry cohorts.  For each cohort the alias is indicated 
in column 1 (see Supplementary Material for details on each study). Numbers of samples 
genotyped (N), basic descriptive statistics include mean (SD) for: age, systolic blood pressure 
(SBP), diastolic blood pressure (DBP), body mass index (BMI);  % HTN = % of individuals 
defined as hypertensive (SBP ≥ 140mmHg, or DBP ≥ 90mmHg, or taking anti-hypertensive or 
blood pressure lowering medication for any reason); % anti-HTN treat. = % of individuals 
taking anti-hypertensive medications. Standard deviations of the residual computed by 
regression of treatment corrected BP on age, age2, sex, and BMI and used in the association are 
given in column 10 and 11. Columns 13 and 14 show information used by the cohorts for 
adjustment of population stratification and sample relatedness (kinship).  Abbreviations; NA= 
non-applicable, PC = Principal Components; IBS = identity by state. 

Supplementary Table 12: Association analyses in samples of non-European 
ancestry, by SNP 

Association of 29 index SNPs in individuals of non-European ancestry.  These data are partly 
presented in Table 1 of the main text.  Unadjusted association P-values are reported, with 
accompanying adjusted P values (Q-values) to correct for multiple testing over all SNPs and 
phenotypes within each ancestry.  See Supplementary Table 13 for risk score analyses by 
individual cohort.  The 29 SNPs were also tested for association with SBP and DBP in 2,030 
individuals of Hispanic origin, but no significant associations were observed (results not 
presented). Abbreviations: EA = East Asian ancestry, SA = South Asian ancestry, AA = 
African and African-American ancestry. 

Supplementary Table 13: Association analyses in samples of non-European 
ancestry, risk score analysis by cohort 

For each cohort, we used all available SNPs passing QC (given in the # SNPs column) to test 
association between BP (either DBP or SBP) and a phenotype specific risk score, 
parameterized using estimates from the stage 0 GWAS meta-analysis in Europeans 
(Supplementary Figure 6).  In columns SBP.a and DBP.a, the value ‘a’ is the estimated effect 
(in mmHg) in the target cohort predicted by the risk score, with associated standard errors in 
columns SBP.SE(a) and DBP.SE(a).  We combined estimates of ‘a’ over cohorts using fixed 
effects inverse variance weighted meta-analyses. 
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Supplementary Table 14: Details on other outcome lookups. 

Combined risk score for 29 genome wide significant SNPs tested for association with blood 
pressure and hypertension in an independent sample, with dichotomous cardiovascular 
outcomes of stroke, coronary artery disease (CAD), chronic kidney disease, and with 
continuous measures of hypertensive target organ damage. "Beta" here is regression coefficient 
for outcome onto risk score, in both units of risk score standard deviations, and also in units of 
mmHg predicted mean BP.  These data are partly presented in Table 2 of the main text. See 
Supplementary Material Section 11 for phenotype definitions.  All analyses of risk score in 
relation to other outcomes were unadjusted for BP levels, except for the HVH sample that was 
(by design) matched for frequency of treated hypertension between MI cases and the common 
controls. Top vs. bottom quintile and decile contrasts are exponentiated for traits on natural log 
(ln) scales, but not for traits on linear scales (SBP, DBP, LV mass and LV wall thickness). 
Pseudo-R2 is real proportion of variance explained (R2) for linear model analyses (continuous 
traits), and (2∆lnL/N) for binary traits (equivalent to Cox and Snell pseudo-R2 for logistic 
regression analyses), where 2∆LnL is twice increase in log likelihood when risk score included 
in model (=(a/aSE)2), and N is total sample size. * UK-US Stroke Collaborative Group 
References for the contributing studies (if available) are: BRIGHT123  C4D133, 
CARDIoGRAM132, CHARGE-HF 124, CKDGen134, EchoGen125, KidneyGen135, NEURO-
CHARGE126, WGHS139. 
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Supplementary Table 15: Description of all validated loci by the International Consortium of Blood Pressure Genome-
wide Association study and GWAS database lookups. 

Column 1 denotes locus (nearest RefSeq gene(s)). Column 2 indicates the sentinel SNP defining the BP association, position on HapMap build 
36, the chromosome band, indicates if the SNP is a non-synonymous SNP or a if a non-synonymous SNP is in linkage disequilibrium (r2) with 
the sentinel SNP: the location of the SNP relative to the nearest gene(s) is also indicated. Column 3 describes loci in the region and biological 
plausibility. Column 4 indicates if prior association with BP exists to this region; Column 5 indicates if experimental models exist with a BP or 
vascular phenotype, or whether there has been prior linkage of the same region in experimental hypertensive models. Column 6 describes 
association with other diseases or traits either at this SNP and all the proxies in high linkage disequilibrium (r2>0.8) or at all RefSeq genes within 
100kb.  Column 7 shows the results from look ups of sentinel or proxy SNPs in two databases:  NHGRI and an Open Access Database of 
GWAS142,143.  Only findings for the other disease/trait reaching a significance of p<1x10-6 or lower are shown. The number of proxy SNPs in the 
look up were: rs17367504: 5; rs2932538: 41; rs13082711: 27; rs3774372: 117; rs419076: 22; rs1458038: 1; rs13107325: 1; rs13139571: 8; 
rs1173771: 7; rs11953630: 21; rs1799945: 4; rs805303: 6; rs4373814: 3; rs1813353: 4; rs4590817: 1; rs932764: 4; rs11191548: 21; rs7129220: 
28; rs381815: 2; rs633185: 8; rs10850411: 10; rs3184504: 3; rs17249754: 9; rs1378942: 8; rs2521501: 2; rs12946454: 1; rs17608766: 0; 
rs12940887: 0; rs1327235: 2; rs6015450: 13. 
 

Locus 
Name 

Sentinel SNP, 
Chr: position, 
chromosomal 
band, relative 
SNP position 

Description of genes in region and  
biological plausibility 

Related to 
human BP ? 

Animal model with BP or 
vascular phenotype or 
regional linkage to BP ? 

Relationship of gene, region, 
SNP or gene product with 
another disease 

Lookup in NHGRI GWAS table 
and non-NHGRI GWAS 
database: by sentinel SNP and 
all proxies r2>0.8, by all RefSeq 
genes within 100kb 

MTHFR-NPPB rs17367504 

ch1: 11,785,365 

1p36.3 

in intron in 
MTHFR 

MTHFR is involved in methionine and homocysteine 
metabolism. MTHFR variants influence homocysteinemia144. 
Mild hyperhomocysteinemia is associated with endothelial 
dysfunction145. 
Other plausible candidate genes in this region include CLCN6, 
NPPA and NPPB.  
CLCN6 encodes a neuronally expressed chloride channel that 
has not been previously implicated in BP control. 
NPPA/NPPB locus has been associated with levels of gene 
product and lower BP107 

Yes55,107,146-148  Mthfr-deficient mice show 
endothelial dysfunction 149 
Mice KO for ANP show 
salt-sensitive hypertension 
150. 
Nppb-null mice 151 display 
cardiac fibrosis.  

MTHFR appears to influence 
susceptibility to occlusive vascular 
disease such as stroke 152,153 , to 
neural tube defects  154 and to 
cancer 155. Usually, interregional 
differences have been reported. 
NPPA has been associated with 
atrial fibrillation 156 

Systolic blood pressure55, 
Plasma homocysteine157,158 Atrial 
fibrillation156 
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Locus 
Name 

Sentinel SNP, 
Chr: position, 
chromosomal 
band, relative 
SNP position 

Description of genes in region and  
biological plausibility 

Related to 
human BP ? 

Animal model with BP or 
vascular phenotype or 
regional linkage to BP ? 

Relationship of gene, region, 
SNP or gene product with 
another disease 

Lookup in NHGRI GWAS table 
and non-NHGRI GWAS 
database: by sentinel SNP and 
all proxies r2>0.8, by all RefSeq 
genes within 100kb 

MOV10 rs2932538 

chr1:113,018,066 
1p13.2 
 
intronic in an EST 
that spans MOV10 

MOV10 protein is a putative helicase, which may be involved in 
mRNA silencing, and is associated with the 60S ribosome 
subunit   It interacts with hepatitis delta antigen and facilitates 
viral replication. MOV10 may be involved in telomerase 
progression.  The signal is 2kb downstream of CAPZA1, which 
is a member of the F-actin capping protein alpha subunit family 
and encodes the alpha subunit of the barbed-end actin binding 
protein.  This modulates protein kinase signaling to cardiac 
myofilaments159. 
The top SNP is 27kb downstream of RHO kinase C, which 
encodes a member of the Ras superfamily of small GTP-binding 
proteins. 

No Rho kinase inhibition with 
fasudil in L-NAME treated 
spontaneously 
hypertensive rats has been 
found to alter RHO kinase 
C expression and improve 
parameters of renal 
function160 

None - 

SLC4A7 rs13082711 

chr11:100,098,748 
11q22.1 
 
~10kb 5' of 
SLC4A7 

The only adjacent gene encodes the solute carrier family 4 
member 7 (SLC4A7). An electro-neutral sodium bicarbonate co-
transporter, also known as, NBC3 and NBCn1161.  
 
SLC4A7 is located on basolateral epithelial cell surface in the 
thick ascending limb and the distal collecting ducts and in 
intercalated cells (either apically or basolaterally) in the 
connecting and collecting tubules162. In the thick ascending limb 
SLC4A7/NBCn1 may be important for ammonium reabsorption.  

No NBCn1 mediates the Na+-
dependent bicarbonate 
transport important for pH 
regulation in smooth 
muscle cells of mouse 
mesenteric, coronary, and 
cerebral small arteries 163. 
 
KO models with disrupted 
SLC4A7 suffer from 
blindness and deafness but 
there is no renal or BP 
phenotype documented 164  

TheSLC4A7 region has recently 
been linked to erythrocyte lead 
levels in dizygotic twin pairs165. 
There is no specific evidence that 
SLC4A7functions as a lead 
transporter.  
 
Prior association of blood lead and 
heavy metal levels with increased 
blood pressure. Note we found 
association of SLC39A8 (which 
transports heavy metals, e.g. 
cadmium) and BP 

Breast cancer166 

ULK4 rs3774372 

chr3:41,852,418 
3p22.1 
 
missense SNP in 
ULK4 

Two SNPs (rs1716975 and rs2272007) linked to rs3774372 are 
associated with altered ULK4 gene expression in lymphoblastoid 
cell lines. ULK4 encodes a serine/threonine protein kinase, the 
role of which is currently unknown. 

Yes91 No No Diastolic blood pressure91 

MECOM rs419076 

chr3:170,583,580 
3q26.2 
 
in intron 1 in 
MDS1 

rs419076 is located within the MECOM locus that may contain 
two genes, the MDS1 gene (myelodysplasia syndrome protein 1) 
and the EVI1 gene (ecotropic viral integration site 1 isoform a).  
MDS1 exists in normal tissues both as a unique transcript and as 
a normal fusion transcript with EVI1167. Little is known about 
the function of MDS1 as a unique transcript.  EVI1 is a zinc-
finger protein and GATA-binding transactivator168 and 
transcriptional repressor169. 

Yes55,91 No EVI1 may be required for heart 
development170 
 
EVI1 and/or MDS1 are found as 
fusion transcripts with the 
transcription factor AML1 in 
leukemic cells169 

Systolic blood pressure91, 
Diastolic blood pressure55 
Hypertension171nasopharangeal 
cancer172, serum magnesium173 

FGF5 rs1458038 
 
chr3:41,852,418 
 
~20kb 5’ of FGF5 

FGF5 stimulates cell growth and proliferation in different cell 
types including cardiomyocytes. The FGF5 has been related to 
angiogenesis in the heart. Related to diastolic blood pressure but 
mechanism is unclear. 

Yes42,55,147,174,175 No Involved in angiogenesis in the 
heart 

Diastolic blood pressure55  
Blood pressure and 
hypertension42,175 
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Locus 
Name 

Sentinel SNP, 
Chr: position, 
chromosomal 
band, relative 
SNP position 

Description of genes in region and  
biological plausibility 

Related to 
human BP ? 

Animal model with BP or 
vascular phenotype or 
regional linkage to BP ? 

Relationship of gene, region, 
SNP or gene product with 
another disease 

Lookup in NHGRI GWAS table 
and non-NHGRI GWAS 
database: by sentinel SNP and 
all proxies r2>0.8, by all RefSeq 
genes within 100kb 

SLC39A8 rs13107325 

chr4:103,407,732 
4q24 
 
missense SNP in 
SLC39A8 

A missense variant withinSLC39A8 (solute carrier family 39 
(zinc transporter) member 8, that encodes a zinc transporter. The 
mouse orthologue transports zinc, cadmium (Cd) and 
manganese176 

No None Transgenic Cd-sensitive mice also 
exhibit acute renal failure and 
proximal tubular damage when 
exposed to cadmium176,177. 
Association between cadmium 
levels and BP/hypertension exists 
in animal models178. 

HDL cholesterol179, 180 

GUCY1A3-
GUCY1B3 

rs13139571 

chr4:156,864,963 
4q32.1 
 
in intron 10 in 
GUCY1A3 

The guanylate cyclase 1, soluble, alpha 3, GUCY1A3lies 23Kb 
upstream of GUCY1B3 encoding α and β subunits of the soluble 
guanylate cyclase (sGC). A signal transduction enzyme activated 
by nitric oxide (NO). 
 
sGC converts GTP to the second messenger cGMP influencing 
cardiovascular homeostasis including smooth muscle tone and 
growth, vascular permeability, platelet reactivity and leukocyte 
recruitment181. 

Yes Spontaneously182 
hypertensive rats have 
impaired endothelium 
dependent vasodilatation, 
decreased GUCY1A3 and 
GUCY1B3 mRNA levels 
and reduced sGC activity 
181,183. 
KO mice deficient for the 
β subunit have raised SBP, 
platelet dysfunction 184. 
The smooth-muscle β 
subunit knockout mice are 
hypertensive with no other 
phenotype 185. 

KO of β subunit develops fatal 
gastrointestinal obstruction184 

- 

NPR3-C5orf23 rs1173771 

chr5: 32,850,785 
5p13.3 
 
~20kb of both 
C5orf23 and 
NPR3 

NPR3 codes for the natriuretic peptide clearance receptor (NPR-
C) expressed in the heart, kidney, and vascular smooth 
muscle186,187 
 
Genetic variation reducing production of NPR-C or altering 
function may reduce clearance of natriuretic peptides, and lower 
BP. NPR-C/Gi coupling opens a Gi-gated inwardly rectifying 
potassium channel (GIRK) and may underlie CNP (C-natriuretic 
peptide) acting as an endothelium-derived hyperpolarising factor 
affecting smooth muscle and relaxing resistance vessels. CNP 
actions may exert anti-atherogenic and anti-platelet properties 
through NPR-C188. 
 
The NPPA/NPPB locus on chr1 has been associated with levels 
of gene product and lower BP107. 

No but NPPA/B 
genotype and 
gene products 
have been 
related to BP 
(see column 3) 
 

NPR3 knockout mice 
demonstrate substantial 
delays in ANP/BNP 
plasma clearance187,188 
 
 

The NPR3 locus has been 
associated with height & skeletal 
parameters in Europeans189,190. 
 
Osteocrin augments NPRC 
induced cGMP production in 
chondrocytes and osteoblasts in 
bone and may explain CNP/NPRC 
involvement in skeletal 
phenotypes191. 
 
A study indicates suggestive 
association of NPR3 with post 
coronary bypass left ventricular 
dysfunction192. 

Height189,190 

EBF1 rs11953630 

chr5:157,777,980 
5q 33.3 
 
250Kb from EBF1 

The. EBF1 (Early B-cell factor 1) is associated with olfactory 
signal transduction193 
 
The marker lies c.800kb upstream of SOX30194 and ADAM19an 
enzyme (a disintegrin and metalloproteinase) family, it is 
involved in cell-cell and cell-matrix interactions195. 

No No 
 

ADAM19 is associated with renal 
disease195. 

Type I Diabetes171, Serum 
bilirubin levels196, Serum markers 
of iron status197,198, Hemoglobin 
levels199,200, Hematocrit200, Mean 
corpuscular volume200, 
Hematological parameters190 
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Locus 
Name 

Sentinel SNP, 
Chr: position, 
chromosomal 
band, relative 
SNP position 

Description of genes in region and  
biological plausibility 

Related to 
human BP ? 

Animal model with BP or 
vascular phenotype or 
regional linkage to BP ? 

Relationship of gene, region, 
SNP or gene product with 
another disease 

Lookup in NHGRI GWAS table 
and non-NHGRI GWAS 
database: by sentinel SNP and 
all proxies r2>0.8, by all RefSeq 
genes within 100kb 

HFE rs1799945 

chr6:26,199,158 
6p22.1 
 
encodes a 
histidine to 
aspartic change at 
amino acid 63 
(H63D) in HFE 

SNP rs1799945 encodes a histidine to aspartic change at amino 
acid 63 (H63D) of the hemochromatosis gene (HFE)201. It is 
unclear how loss of function mutations in HFE could influence 
blood pressure but it could be a downstream consequence of 
altered total body iron stores or a function of altered HFE-
hepcidin-signaling pathways. 
 
The minor alleles of SNP rs198846 and perfect proxy rs1799945 
(MAF 0.15), in the HLA region on chromosome 6, were 
associated with higher DBP (P = 3x10-11).  
 
The minor allele rs1800562 (MAF 0.04) is also weakly 
associated with increased DBP in the discovery GWAS (P = 
3x10-4) and modestly stronger but not meeting the threshold for 
further genotyping at stage 1 validation (P = 2x10-5).   

No but C282Y 
associated with  
BP treatment202. 

KO model for HFE exists 
but no BP phenotypes 
reported203. 

This variant is a low penetrance 
allele for hemochromatosis201 and 
is involved in microvascular 
complications of diabetes204. 
 
Hemochromatosis is characterized 
by iron overload with multi-organ 
dysfunction caused by mutations in 
several genes that regulate 
hepcidin-induced degradation of 
ferroportin. The most common 
cause is homozygosity for the 
minor allele of rs1800562 
(C282Y); this polymorphism, with 
H63D, is also a likely regulator of 
Haemoglobin and other red cell 
phenotypes in the general 
population200. 

Hemoglobin, haematocrit, MCH 
and MCV levels200 

BAT2-BAT5 rs805303 

chr6:31,724,345 
6p21.33 
 
intronic in BAT3 

This signal is in a region of extended haplotypes in the major 
HLA complex 1205. rs805303, is in an intron of BAT3 (HLA-B-
associated transcript 3). 
 
Implicated in the control of apoptosis and modulation of TGF-β 
signaling through TGF-β type I and type II in renal mesangial 
cells206. The region includes other genes (see locus column). 

No None HLA region associated with lung 
cancer and rheumatoid 
arthritis207,208. 
 
The nsSNP rs1046089 in BAT2 
has recently been associated with 
malaria susceptibility 209. Another 
SNP in this gene is associated with 
risk of stroke 210. 

Type I Diabetes211, Weight212, 
Lung adenocarcinoma213, Lung 
cancer207,214, Multiple sclerosis215, 
Rheumatoid Arthritis171,216 

CACNB2(5') 
 
 
 
 
 
 
CACNB2(3’) 

rs4373814 

chr10:18,459,978 
10p12.33 
 
~10kb 5' of 
CACNB2 
rs1813353 

chr10:18747454 
 
intronic in 
CACNB2 

The two SNPs (rs4373814 and rs1813353; pairwise r2=0.015) 
associated with SBP & DBP point to two distinct causal variants. 
The CHARGE consortium reported BP association for 
rs11014166 (r2 0.93 with rs1813353; r2=0.22 with rs4373814) 
in CACNB291. 
 
CACNB2 is expressed in the heart and encodesthebeta-2 subunit 
of a voltage-gated calcium channel. As a member of a family of 
voltage-gated calcium channel genes, CACNB2 may regulate BP 
through interaction of the beta-2 subunit with alpha-1 calcium 
channels (CaV1.2)217. 

Yes 91,147 KO model not phenotyped 
for BP218. 

Coding variation in CACNB2 
appears to be responsible for 
Brugada syndrome219. 
 
KO mice deaf due to impaired 
auditory nerve conductance218. 

Systolic blood pressure91, 
Diastolic blood pressure91, 
Hypertension91, Protein 
quantitative trait loci220, Bipolar 
disorder171 
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Locus 
Name 

Sentinel SNP, 
Chr: position, 
chromosomal 
band, relative 
SNP position 

Description of genes in region and  
biological plausibility 

Related to 
human BP ? 

Animal model with BP or 
vascular phenotype or 
regional linkage to BP ? 

Relationship of gene, region, 
SNP or gene product with 
another disease 

Lookup in NHGRI GWAS table 
and non-NHGRI GWAS 
database: by sentinel SNP and 
all proxies r2>0.8, by all RefSeq 
genes within 100kb 

C10orf107 rs4590817 

chr10:63,137,559 
 
intronic in 
C10orf107 

Chromosome 10 open reading frame with no clear neighbouring 
candidate gene or functional implication in blood pressure. 

Yes 55,91,147 No None Systolic blood pressure55 

PLCE1 rs932764 
chr10:95,885,930 
10q23.33 
 
intronic in PLCE1 

The phospholipase–C–epsilon -1 (PLCE-1) isoform catalyses the 
hydrolysis of polyphosphoinositides affecting second messenger 
cascades influencing cellular growth, differentiation and gene 
expression. PLCE1 is important for normal podocyte 
development within the glomerulus of the kidney221. 
 
Within this interval of high LD there is an adipocyte 
differentiation gene (NOC3L) and the pseudogene PIPSL. 
Neither represent good candidates. 

Yes222,223. No 
 

Implicated in familial nephrotic 
syndromes with end-stage kidney 
disease221,222. In focal segmental 
glomerulonephritis characterized 
by glomerulosclerosis222,223.  
 
A type of glomerulosclerosis, the 
Kimmelstiel-Wilson lesion, has 
been described in severe 
hypertension with nephropathy and 
proteinuria. 

Eosophageal squamous cell 
carcinoma224, gastric 
adenocarcinoma225- 

CYP17A1-
NT5C2 

rs11191548 

ch10: 104,836,168 

5’-UTR of NT5C2 

CYP17A1 encodes the cytochrome P450 enzyme CYP17A1 that 
mediates steroid 17α-hydroxylase and 17.20-lyase activity. The 
first enzymatic action is a key step in the biosynthesis of 
mineralocorticoids and glucocorticoids that affects sodium 
handling in the kidney and the second is involved in sex-steroid 
biosynthesis. Missense mutations in CYP17A1 cause one form of 
adrenal hyperplasia characterized by hypertension, hypokalemia 
and reduced plasma renin activity226,227. 
 
AS3MT is involved in arsenic metabolism228. Chronic arsenic 
exposure causes high BP in humans228 and animals potentially 
via increased oxidative stress229. 
 
For the other genes present in this locus (C10orf32, CNNM2 and 
NT5C2), no physiological link with blood pressure could be 
found.  

Yes55,91,147 As3mt KO mice have 
decreased ability to 
metabolise arsenic230 

 Systolic blood pressure55, 
intracranial aneurysm231 

ADM rs7129220 

chr11:10,307,114 
 
~20kb 3' of ADM, 
intronic in an EST 

ADM codes for a pro-peptide that is cleaved to generate a widely 
expressed, 52 amino acid protein, adrenomedullin with 
vasodilator and BP regulatory properties. Plasma adrenomedullin 
is associated with mean arterial pressure in men and with pulse 
pressure in women232 and pro-adrenomedullin was reported to be 
associated with pulse pressure and hypertensive target organ 
damage in African Americans233. 

Yes ADM+/- mice exhibit 
elevated blood pressure 
and diminished nitric 
oxide production234. 
 
ADM mice expressing 
50% -140% mRNA do not 
exhibit basal BP 
changes235 

Polymorphisms in the human ADM 
gene have been associated with 
genetic predisposition to diabetic 
nephropathy and proteinuria with 
essential hypertension. 

Plasma HDL-cholesterol236, 
human stature237, bipolar 
disorder238 
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Locus 
Name 

Sentinel SNP, 
Chr: position, 
chromosomal 
band, relative 
SNP position 

Description of genes in region and  
biological plausibility 

Related to 
human BP ? 

Animal model with BP or 
vascular phenotype or 
regional linkage to BP ? 

Relationship of gene, region, 
SNP or gene product with 
another disease 

Lookup in NHGRI GWAS table 
and non-NHGRI GWAS 
database: by sentinel SNP and 
all proxies r2>0.8, by all RefSeq 
genes within 100kb 

PLEKHA7 rs381815 

chr11: 16,858,844 
 
intronic in 
PLEKHA7 

Pleckstrin homology domain-containing family member A7 is 
located at zonula adherens in epithelial cells and is thought to be 
responsible for microtubule adherence at the apical end of these 
cells. The role of this gene product in blood pressure is unclear  

Yes91,147 No No Systolic blood pressure91, 
Diastolic blood pressure91 
Blood pressure and 
hypertension175 

FLJ32810-
TMEM133 

rs633185 

chr11:100,098,748 
11q22.1 
 
intronic in 
FLJ32810 

FLJ32810 encodes a Rho-‐type GTPase activating protein with 
SH3 and pleckstrin binding domains; it has no known or 
suspected roles in blood pressure control or hypertension. 
 
SNP is >200kb from TMEM133 & the progesterone receptor 
(PGR) gene encodes a member of the steroid receptor 
superfamily and mediates the physiological effects of 
progesterone, which plays a central role in reproductive events 
associated with the establishment and maintenance of pregnancy. 

No No None None 

ATP2B1 rs17249754 

chr12: 88,584,717 
 
~5kb 5’ of 
ATP2B1 

ATP2B1 encodes a plasma membrane calcium/calmodulin 
handling ATPase (PMCA1) which is implicated in calcium 
efflux from cells. It is expressed in the endothelium. 

Yes 
42,91,239  

Rat aortic smooth muscle 
expression is enhanced in 
the spontaneously 
hypertensive rat 

 Diastolic blood pressure42,91, 
Hypertension91, Systolic blood 
pressure42,91, Biomedical 
quantitative trait221, serum 
magnesium173 

SH2B3 rs3184504 

chr12: 
110,368,991 
 
missense SNP in 
SH2B3 

This SNP is intronic within the ataxin gene, which has been 
linked to the autosomal dominant cerebellar ataxias. It is within a 
cluster of highly correlated SNPs spanning 200kb and is 
perfectly correlated with a missense SNP in SH2B3 (rs3184504, 
R262W, r2 in CEU to rs653178 = 1.0), The same minor allele of 
rs3184504 has been associated with type 1 diabetes and celiac 
disease.  The SH2B3 protein (also known as lymphocyte-specific 
adapter protein, LNK) is one of a subfamily of SH2 domain-
containing proteins and is implicated in growth factor, cytokine, 
and immunoreceptor signaling. Within the associated interval 
lies ALDH2 (acetaldehyde dehydrogenase type 2) a key enzyme 
in alcohol metabolism which has previously be associated with 
BP levels 

Yes55,91,147 No Knockout mice of SH2B3 are 
viable but sensitised to cytokines 

Systolic blood pressure55,91, 
Diastolic blood pressure55,91, Type 
1 diabetes171,240, Hematocrit and 
hemoglobin200, Plasma 
eosinophil count241, Celiac 
disease242 myocardial 
infarction241, retinal vascular 
caliber243 

TBX5-TBX3 rs10850411 

chr12:113,872,179 
12q24.21 
 
~200kb from 
CR591392 and 
300kb from TBX3 

T-box genes share a common DNA Binding domain and encode 
transcription factors involved in the regulation of developmental 
processes. TBX5 acts as an activator and competes with TBX3 
which acts as a repressor for various myocardial genes. A 
mutation in TBX5 causes Holt Oram syndrome which may be 
associated with altered expression of natriuretic peptides. 

Yes91,147 TBX5 Knockouts have 
marked reduction in 
natriuretic peptides. Not 
phenotyped for BP244. 

Holt Oram Syndrome which 
affects cardiac development and 
paroxysmal AF245 
 
TBX3 and TBX5 are both 
associated with PR. Common 
variants modulate heart rate, PR 
interval and QRS duration246,247. 

Hypertension, Type 2 Diabetes, 
Coronary Artery Disease171, 
Gallstone disease248. 
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Locus 
Name 

Sentinel SNP, 
Chr: position, 
chromosomal 
band, relative 
SNP position 

Description of genes in region and  
biological plausibility 

Related to 
human BP ? 

Animal model with BP or 
vascular phenotype or 
regional linkage to BP ? 

Relationship of gene, region, 
SNP or gene product with 
another disease 

Lookup in NHGRI GWAS table 
and non-NHGRI GWAS 
database: by sentinel SNP and 
all proxies r2>0.8, by all RefSeq 
genes within 100kb 

CYP1A1-ULK3 rs1378942 

ch15: 72,864,420 

intronic in CSK 

Human CYP1A2 is one of the major CYPs in human liver and 
metabolizes a number of drugs (e.g. caffeine, theophylline, 
propranolol and verapamil), carcinogens and endogenous 
compounds (e.g. melatonin and estrogens). There are large inter-
individuals variability in CYP1A2 expression according to 
CYP1A2 genotypes. CYP1A2 influence the association of coffee 
intake with hypertension249.  
 
In vitro experiments showed that CSK is involved in the 
reorganisation of the actin cytoskeleton250. Actin cytoskeleton 
might play a role in blood pressure control by influencing Na-K 
ATPase activity251. 

Yes42,49,55,91,147,249 Cyp1a2-null mice and 
cyp1a1-null mice both 
exist, but marked 
interspecies differences in 
substrate specificity limit 
the extrapolation of animal 
findings to humans. 
Cyp1a1 KO mice, show 
that CYP1A1 activity is 
needed for halogenated 
aromatic hydrocarbons-
associated endothelial 
dysfunction and 
hypertension252. 
 
The ARID3b gene is 
embryonic lethal when 
knocked out in mouse, 
with branchial arch and 
vascular developmental 
abnormalities253. 

CYP1A1 and CYP1A2 share 
common xenobiotic response 
elements254 and influence the 
metabolism of numerous drugs. 
CYP1A2 variants influence the 
association of coffee intake with 
myocardial infarction255. 

Diastolic blood pressure55,91 

FURIN-FES rs2521501 
chr15:89,238,392 
15q26.1 
 
in intron 18 of 
FES 

SNP is 11kb downstream of FURIN, encoding a type-1 
membrane bound protease and member of the subtilisin-like 
proprotein convertase family (known as PCSK3). It activates 
proteins including: receptors (insulin and the hepatocyte growth 
factor), plasma proteins (complement c3, von Willebrand factor) 
and hormones (nerve growth factor, endothelin, parathormone, 
transcription growth factor type beta).  
It solubilises hemojuvelin and pro-hepcidin (see HFE) the pro-
renin receptor, and cleavage of the α&γ subunits of the epithelial 
sodium channel (eNAC) 256, 257,258. Mutations of eNAC cause 
Mendelian forms of hyper/hypotension.  
The v-fes feline sarcoma viral oncogene (FES) regulates innate 
immune response.  
 

Yes259 No No Attention deficit hyperactivity 
disorder260. 
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Locus 
Name 

Sentinel SNP, 
Chr: position, 
chromosomal 
band, relative 
SNP position 

Description of genes in region and  
biological plausibility 

Related to 
human BP ? 

Animal model with BP or 
vascular phenotype or 
regional linkage to BP ? 

Relationship of gene, region, 
SNP or gene product with 
another disease 

Lookup in NHGRI GWAS table 
and non-NHGRI GWAS 
database: by sentinel SNP and 
all proxies r2>0.8, by all RefSeq 
genes within 100kb 

GOSR2 rs17608766 

chr17:42,368,270 
17q21.32 
 
intronic in 
GOSR2; within a 
tight LD block 
across GOSR2 

Golgi SNAP receptor complex member 2 (GOSR2) gene 
encodes three different isoforms of a trafficking membrane 
protein which transports proteins among the medial- and trans-
Golgi compartments261 This locus has been linked with 
hypertension and/or blood pressure in familial linkage 
studies262,263. Recently the non-synonymous Lys67Arg SNP 
within GOSR2 (rs197922) associated with hypertension in 
whites264 (see also other diseases). 

Yes264 Homologous to a region of 
chromosome 10 which 
contains a QTL for blood 
pressure in a rat model of 
hypertension265,266. 

The same SNP has been associated 
with aortic root dilatation in a 
meta-analysis of genes for cardiac 
structure125. 
An association of a 
nsSNPLys67Arg within GOSR2 
(rs197922) with coronary heart 
disease and hypertension in whites 
has been reported in r2 0.26 with 
rs17608766264. 

- 

ZNF652 rs12940887 

chr17:44,757,806 
17q21.32 
 
intronic in 
ZNF652 

GBPG has reported association with DBP of SNP rs16948048 
near ZNF652 and PHB, which is in high LD (r2 = 0.9) with the 
SNP reported here. 

Yes55,147,175 No ZNF652 has been implicated in 
tumorigenesis267 

Diastolic blood pressure55 

JAG1 rs1327235 

chr20:10,917,030 
20p12.2 
 
~300kb 5’ of 
JAG1, intronic 
within an EST 

The JAG1 (jagged 1) locus is in the center of the short arm of 
chromosome 20268and encodes a ligand for the Notch receptor.  
 
Jagged/Notch interactions are critical for determination of cell 
fates in early development. 

Yes, see other 
diseases 

Endothelial-specific 
deletion of JAG1 in mice 
results in striking deficits 
of vascular smooth 
muscle269). 

Mutations in JAG1 cause Alagille 
syndrome, which has cholestatic, 
skeletal, cardiac, ocular, and facial 
characteristics and includes renal 
involvement with 
hypertension270,271. 

- 

GNAS-EDN3 rs6015450 

chr20:57,184,512 
20q13.2 
 
in intergenic 
region near EDN3 
& 10kb from 
ZNF831 and 
MRPS16P 

The endothelin 3 (EDN3) gene is a strong candidate for blood 
pressure regulation. The endothelins are widely expressed 
vasoactive peptides that exert proliferative, inflammatory, and 
fibrotic changes in blood vessels and other organs involved in 
the regulation of vascular tone and blood pressure. The 
endothelin receptors are being investigated as treatments for 
hypertension and vascular disease182. 
 
The SNP is near ZNF831 and the pseudogene MRPS16P with no 
known function. 
 
GNAS encodes the alpha subunit of the heterotrimeric G-protein, 
which mediates signal transduction at the β1 and β2 adrenergic 

receptors, influencing heart rate and smooth muscle tone272. 

Yes91. In a rat model, the EDN3 
gene has been closely 
linked to a QTL for blood 
pressure and heart 
weight273. 
 
In a mouse model, EDN3 
was involved in axonal 
direction of developing 
sympathetic neurons 
toward intermediate 
vascular targets and 
selected end-organs274. 

Mutations in EDN3 and the EDN3 
receptor B are associated with 
Hirschsprung disease and 
Waardenburg syndrome, 
congenital disorders involving 
neural crest-derived cells275. 
Altered EDN3 gene expression 
reported in breast cancer276. 
Response to treatment in 
schizophrenia 
In patients with pulmonary arterial 
hypertension, EDN3 levels were 
lower (and endothelin 1 higher) 
compared with controls correlating 
with hemodynamic markers of 
disease severity277. 

Hypertension91, Response to 
antipsychotic therapy - 
extrapyramidal side effects278 
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bioinformatics
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Declare significant

Stage 1 targeted genotyping

Stage 2 targeted genotyping

plus prior targeted genotyping (Newton-Cheh et al. 2009)

Suppl. Fig. 1: Sequential design used for the ICBP GWAS discovery and validation study.
Decision about the progression of each SNP (arrows and rectangles) depended
on the association P -value calculated using data from all previous stages, de-
noted PA where A ⊆ {0, 1, 2, 3}. Additional targeted genotyping was consid-
ered not to be cost effective both for SNPs with sufficiently strong evidence
(green rectangles on left, indicated by stars in Supplementary Table 4) and
also for SNPs with sufficiently weak evidence (red rectangles on right, indi-
cated by daggers in Supplementary Table 4).
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Suppl. Fig. 2: QQ plots for meta-analysis associations statistics. Results for all ∼ 2.5M
SNPs with Neffective ≥ 17, 500 are plotted in black. Results excluding all SNPs
within 1Mb of 29 confirmed signals are plotted in red, and results exclud-
ing SNPs within 1Mb of 36 signals for which validation was attempted (see
Supplementary Table 4) are plotted in orange.
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Suppl. Fig. 3: Concordance of effects on DBP, SBP, and hypertension. The per-allele mmHg
and odds ratio (OR) effect sizes are scaled relative to each other such that the
median effect size (over all SNPs) is a bar of the same height.
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Suppl. Fig. 3: (continued).
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Suppl. Fig. 4: Regional association plots (continued over three more pages)
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Suppl. Fig. 4: (continued) Regional association plots
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Suppl. Fig. 4: (continued) Regional association plots
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Suppl. Fig. 4: (continued) Regional association plots
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Suppl. Fig. 5: The contributions of additional common variants of modest effect were studied
in 50 distinct cohortwise partitions of our primary (stage 0 GWAS) dataset.
For each partition, ∼ 80% of the N=69,899 samples were used for “discovery”
and the nonoverlapping ∼ 20% were used for “testing”. Each block in the fig-
ure represents SNPs with discovery P -values in a given bin. We selected SNPs
that were effectively independent of each other and independent of all SNPs
with more significant discovery P -values using a pairwise r2 < 0.05 threshold.
The percentage of phenotypic variance explained in the testing subset (mean
over 50 partitions, plotted on the y-axis) is therefore approximately additive
across bins. Each block is annotated with the number of selected SNPs, and
the P -value for a 1 d.f. test of association with the resulting multi-SNP risk
score in the testing subset (both are medians over 50 partitions).
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Suppl. Fig. 6: We used the estimated distribution of effect sizes for the total 29 independent
associations validated here and previously, and standard power calculations, to
estimate the total number of independent associations that could be detected
as a function of sample size (see Supplementary Appendix A for details). The
error bars represent variability across replicate discovery experiments with the
same sample size, assuming the point estimate of 116 variants in total is fixed.
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Sex- and BMI-interaction analyses: Georg B. Ehret, Toby Johnson, Vasyl Pihur, Nick RG Shrine 
Copy number variant (CNV) analyses: Toby Johnson 
MAGENTA analyses: Albert V. Smith 
Figures and Tables: Georg B. Ehret, Toby Johnson, Patricia B. Munroe 
Literature review and database lookups: Murielle Bochud, Mark J. Caulfield, Aravinda Chakravarti, 
Georg B. Ehret, Paul Elliott, Andrew D. Johnson, Toby Johnson, Daniel Levy, Patricia B. Munroe, 
Christopher Newton-Cheh, Louise V. Wain 
Statistical review: Gonçalo R. Abecasis, Aravinda Chakravarti, Martin G. Larson, Christopher 
Newton-Cheh, Ken M. Rice 
 
Cohort contributions 
Age, Gene/Environment Susceptibility study.      Study concept/design: A.V.S., L.L., T.B.H., T.A., 
V.G.  Phenotype data acquisition/QC: L.L., T.B.H., T.A., V.G.  Genotype data acquisition/QC: 
A.V.S., M.G.  Data analysis: A.V.S., T.A.   
Amish studies.      Study concept/design: A.R.S.  Phenotype data acquisition/QC: A.Parsa, A.R.S., 
N.I.S., Y.-P.C.  Genotype data acquisition/QC: J.R.O'C.  Data analysis: A.Parsa, J.R.O'C.   
ARYA study.      Study concept/design: C.S.P.M.U., D.E.G., M.L.B.  Phenotype data acquisition/QC: 
C.S.P.M.U., D.E.G., M.L.B.  Data analysis: C.S.P.M.U., D.E.G., M.L.B.   
Atherosclerosis Risk In Communities study.      Study concept/design: A.C., G.B.E., E.Boerwinkle, 
J.C., S.K.G.  Phenotype data acquisition/QC: A.C., E.Boerwinkle, G.B.E., A.C.M., A.K., J.C., S.K.G., 
W.H.L.K.  Genotype data acquisition/QC: A.C., G.B.E., D.E.A., E.Boerwinkle, A.K., J.C., S.K.G., 
W.H.L.K.  Data analysis: G.B.E., A.C.M., A.C., D.C.R., E.Boerwinkle, G.S., J.C., W.H.L.K., Y.V.S.   
Baltimore Longitudinal Study of Ageing.      Study concept/design: L.F.  Phenotype data 
acquisition/QC: S.N.  Genotype data acquisition/QC: D.Hernandez  Data analysis: T.Tanaka   
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British 1958 Birth Cohort – Type 1 Diabetes Genetics Consortium.      Study concept/design: 
D.P.S.  Phenotype data acquisition/QC: D.P.S.  Genotype data acquisition/QC: S.Heath, W.L.McA.  
Data analysis: D.P.S.   
British 1958 Birth Cohort – Wellcome Trust Case Control Consortium.      Study concept/design: 
D.P.S.  Phenotype data acquisition/QC: D.P.S.  Genotype data acquisition/QC: W.L.McA.  Data 
analysis: D.Hadley, D.P.S.   
BRItish Genetics of HyperTension study.      Study concept/design: A.F.D., J.M.C., M.J.C., M.F., 
M.J.B., N.J.S., P.B.M.  Phenotype data acquisition/QC: A.F.D., J.M.C., M.J.C., M.J.B., N.J.S., 
P.B.M.  Genotype data acquisition/QC: M.J.C., P.B.M., P.H., S.S.-H., T.J.  Data analysis: P.B.M., 
T.J.   
British Regional Heart Study.      Study concept/design: P.H.W., R.W.M.  Phenotype data 
acquisition/QC: P.H.W., R.W.M.  Genotype data acquisition/QC: A.D.H., P.H.W., R.W.M.  Data 
analysis: R.W.M.   
British Women’s Heart and Health Study.      Study concept/design: D.A.L., J.P.C.  Phenotype data 
acquisition/QC: D.A.L., J.P.C.  Genotype data acquisition/QC: D.A.L., I.N.M.D., T.R.G.  Data 
analysis: D.A.L., T.R.G.   
Busselton Health Study.      Study concept/design: L.J.P.  Phenotype data acquisition/QC: J.P.B.  
Genotype data acquisition/QC: J.P.B., R.W.L.  Data analysis: M.N.C., R.W.L.   
C4D consortium.      Study concept/design: R.Clarke, R.Collins  Phenotype data acquisition/QC: 
J.C.H., R.Clarke, R.Collins  Genotype data acquisition/QC: H.O., J.C.H.  Data analysis: H.O., J.C.H.   
Candidate-gene Association REsource.      Phenotype data acquisition/QC: A.W.D., E.R.F., J.H.Y., 
X.Z., Y.Li  Data analysis: X.Z., Y.Li   
Cardiovascular Health Study.      Study concept/design: B.M.P., J.I.R., J.C.B., K.M.R., N.L.G.  
Phenotype data acquisition/QC: B.M.P.  Genotype data acquisition/QC: J.I.R., J.C.B., N.L.G.  Data 
analysis: J.C.B., K.M.R., N.L.G., X.G.   
Cardiovascular risk in Young Finns Study.      Study concept/design: J.V., M.Kähönen, O.R., T.L.  
Phenotype data acquisition/QC: J.V., M.Kähönen, O.R., T.L.  Genotype data acquisition/QC: J.V., 
M.Kähönen, O.R., T.L.  Data analysis: O.R., T.L.   
Cebu Longitudinal Health and Nutrition Survey.      Study concept/design: K.L.M., L.S.A.  
Phenotype data acquisition/QC: L.S.A., N.R.L.  Genotype data acquisition/QC: K.L.M.  Data 
analysis: Y.W.   
CHARGE-Heart Failure Working Group. For complete acknowledgments see Smith NL et al. Circ 
Cardiovasc Genet. 2010 Jun 1;3(3):256-66. 
CKDGen consortium.      Study concept/design: CKDGen Consortium  Phenotype data 
acquisition/QC: CKDGen Consortium  Genotype data acquisition/QC: CKDGen Consortium  Data 
analysis: A.Teumer, C.P., M.Olden, M.H.C., CKDGen Consortium   
CLUE study.      Study concept/design: A.C., J.C., K.-D.H.N., S.K.G., W.H.L.K.  Phenotype data 
acquisition/QC: A.K., A.C., J.C., J.H.B., K.-D.H.N., S.K.G., W.H.L.K.  Genotype data 
acquisition/QC: A.K., A.C., G.B.E., G.H., J.C., J.H.B., K.-D.H.N., S.K.G., W.H.L.K.  Data analysis: 
A.C., G.B.E., K.-D.H.N., S.K.G., W.H.L.K.   
Cohorte Lausannoise.      Study concept/design: P.Vollenweider, V.M.  Phenotype data 
acquisition/QC: M.Bochud, P.Vollenweider, V.M.  Genotype data acquisition/QC: P.Vollenweider, 
V.M.  Data analysis: J.S.B., M.Bochud, S.Bergmann, T.J.   
Control of Blood Pressure and Risk Attenuation study.      Phenotype data acquisition/QC: N.C., 
T.H.J.  Genotype data acquisition/QC: T.H.J., T.M.F.  Data analysis: M.I., T.H.J.   
Coronary ARtery Disease Genome-wide Replication And Meta-analysis consortium.      Study 
concept/design: CARDIoGRAM consortium  Phenotype data acquisition/QC: CARDIoGRAM 
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consortium  Genotype data acquisition/QC: CARDIoGRAM consortium  Data analysis: J.E., 
CARDIoGRAM consortium   
Coronary Risk of Insulin Sensitivity in Indian Subjects study.      Phenotype data acquisition/QC: 
S.R.K.  Genotype data acquisition/QC: G.R.C.  Data analysis: G.R.C.   
DIAbetes GENetic study.      Study concept/design: B.L., J.G., P.E.H.S., S.R.B.  Phenotype data 
acquisition/QC: P.E.H.S.  Data analysis: P.E.H.S.   
Diabetes Genetics Initiative.      Study concept/design: C.N.-C., D.A., L.G.  Phenotype data 
acquisition/QC: C.N.-C., L.G.  Genotype data acquisition/QC: B.F.V., D.A.  Data analysis: B.F.V., 
C.N.-C., P.A.   
DILGOM expression/metabonomics.      Phenotype data acquisition/QC: J.Kettunen  Data analysis: 
J.Kettunen   
EchoGen consortium.     For complete acknowledgments see Vasan RS et al. JAMA. 2009 Jul 
8;302(2):168-78. 
Edinburgh Artery Study.      Study concept/design: F.G.R.F.  Phenotype data acquisition/QC: 
F.G.R.F.  Genotype data acquisition/QC: F.G.R.F., P.H.  Data analysis: I.T., P.H.   
English Longitudinal Study of Ageing.      Phenotype data acquisition/QC: M.Kumari, M.G.M.  
Genotype data acquisition/QC: A.Taylor, M.Kumari   
EPIC Turin study.      Study concept/design: G.M., P.Vineis  Phenotype data acquisition/QC: 
F.Ricceri  Genotype data acquisition/QC: S.G.  Data analysis: F.Ricceri   
eQTL lookup.      Study concept/design: A.Plump, V.E.  Phenotype data acquisition/QC: D.L.  
Genotype data acquisition/QC: A.Plump, V.E.  Data analysis: A.Plump, V.E.  Database design and 
cross-dataset aggregation: A.D.J. 
ERF study (EUROSPAN).      Study concept/design: A.Hofman, B.A.O., C.M.vanD., J.C.M.W.  
Phenotype data acquisition/QC: C.M.vanD., E.J.G.S., F.M.-R., G.C.V., J.C.M.W.  Genotype data 
acquisition/QC: A.G.U., F.Rivadeneira  Data analysis: A.Dehghan, C.M.vanD., G.C.V., N.A., Y.A.   
European Prospective Investigation of Cancer Norfolk study.      Study concept/design: K.-T.K., 
N.J.W.  Phenotype data acquisition/QC: K.-T.K., N.J.W.  Genotype data acquisition/QC: I.B., J.H.Z., 
N.J.W., R.J.F.L.  Data analysis: J.H.Z., R.J.F.L.   
Family Blood Pressure Program, GenNet study.      Study concept/design: A.B.W., A.C., G.B.E.  
Phenotype data acquisition/QC: A.B.W., A.C., G.B.E., K.-D.H.N., S.K.G.  Genotype data 
acquisition/QC: A.C., G.B.E., G.H., K.-D.H.N., S.K.G.  Data analysis: G.B.E., A.C., K.-D.H.N., 
S.K.G.   
Family Blood Pressure Program, Hypertension Genetic Epidemiology Network.      Study 
concept/design: A.C., D.C.R., G.B.E., S.C.H.  Phenotype data acquisition/QC: A.C., D.C.R., G.B.E., 
K.-D.H.N., S.K.G., S.C.H.  Genotype data acquisition/QC: A.C., D.C.R., G.B.E., K.-D.H.N., S.K.G.  
Data analysis: G.B.E., A.C., D.C.R., G.S., K.-D.H.N., S.K.G., Y.V.S.   
Fenland study.      Study concept/design: N.J.W.  Phenotype data acquisition/QC: N.J.W.  Genotype 
data acquisition/QC: J.a.L., N.J.W., R.J.F.L.  Data analysis: J.a.L., R.J.F.L.   
Finland-United States Investigation of NIDDM Genetics study.      Study concept/design: F.S.C., 
J.Tuomilehto, K.L.M., M.Boehnke, R.N.B.  Phenotype data acquisition/QC: J.Tuomilehto  Genotype 
data acquisition/QC: F.S.C.  Data analysis: A.U.J.   
Finland-United States Investigation of NIDDM Genetics study 2.      Study concept/design: 
K.L.M., L.J.S.  Phenotype data acquisition/QC: H.M.S.  Genotype data acquisition/QC: L.L.B.   
FINRISK 1997 Study.      Study concept/design: L.P., V.S.  Phenotype data acquisition/QC: E.V., 
V.S.  Genotype data acquisition/QC: C.N.-C., L.P., M.P.  Data analysis: C.N.-C. 
Flemish Study on Environment, Genes and Health Outcomes.      Study concept/design: E.Brand, 
J.A.S., S.-M.B.-H., T.K.  Phenotype data acquisition/QC: J.A.S., T.K.  Genotype data acquisition/QC: 
E.Brand, S.-M.B.-H.  Data analysis: J.A.S., T.K.   
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Framingham Heart Study.      Phenotype data acquisition/QC: D.L., M.G.L., R.S.V., S.-J.H., T.J.W.  
Genotype data acquisition/QC: M.G.L., S.-J.H.  Data analysis: M.G.L., S.-J.H.   
Genetic Regulation of Arterial Pressure of Humans in the Community study.      Study 
concept/design: M.D.T., N.J.S., P.R.B., P.S.B.  Phenotype data acquisition/QC: M.D.T., N.J.S., 
P.R.B.  Genotype data acquisition/QC: M.T., M.S.A., M.D.T., N.J.S., P.R.B., P.S.B.  Data analysis: 
M.T., M.S.A., M.D.T., N.J.S.   
Georgia Cohorts.      Study concept/design: H.S.  Phenotype data acquisition/QC: X.W., H.S.  
Genotype data acquisition/QC: H.Z., Y.D.  Data analysis: X.W.   
Health ABC study.      Study concept/design: T.B.H.  Phenotype data acquisition/QC: K.K.L., 
T.B.H., Y.Liu  Genotype data acquisition/QC: K.K.L., M.E.R., T.B.H., Y.Liu  Data analysis: K.K.L., 
Y.Liu   
Heart and Vascular Health Study.      Study concept/design: N.L.S., S.R.H.  Phenotype data 
acquisition/QC: K.L.W., N.L.S., S.R.H.  Genotype data acquisition/QC: N.L.S., S.R.H.   
Howard University Family Study.      Study concept/design: A.A., C.R.  Phenotype data 
acquisition/QC: A.A., A.Doumatey, C.R.  Genotype data acquisition/QC: A.A., A.Doumatey, C.R., 
D.Shriner  Data analysis: A.A., C.R., D.Shriner   
HYPertension in ESTonia study.      Study concept/design: E.O., M.V., M.Laan  Phenotype data 
acquisition/QC: E.O., G.V., M.V., M.Laan  Genotype data acquisition/QC: E.O., M.Laan  Data 
analysis: S.Sõber   
Indian Migration Study.      Study concept/design: D.P., G.D.S., S.Kinra  Phenotype data 
acquisition/QC: D.P., S.Kinra  Genotype data acquisition/QC: D.G.V., G.R.C.  Data analysis: G.R.C., 
V.T.   
Insulin Resistance Atherosclerosis Family Study.      Study concept/design: C.D.L., J.I.R., L.E.W.  
Phenotype data acquisition/QC: C.D.L., J.I.R., L.E.W.  Genotype data acquisition/QC: C.D.L., N.D.P.  
Data analysis: C.D.L.   
Intergene study.      Study concept/design: A.Rosengren, D.S.T.  Phenotype data acquisition/QC: 
A.Rosengren, D.S.T.  Genotype data acquisition/QC: F.N., S.D.  Data analysis: F.N., S.D.   
Invecchiare in Chianti study.      Study concept/design: S.Bandinelli, Y.M.  Phenotype data 
acquisition/QC: A.M.C.  Genotype data acquisition/QC: A.Singleton   
Jamaican individuals from Kingston and Spanish Town & Nigerian study.      Study 
concept/design: B.T., T.F., C.A.McK., R.S.C.  Phenotype data acquisition/QC: B.T., T.F., C.A.McK., 
T.S.  Genotype data acquisition/QC: B.T., C.A.McK., C.N.-C., G.H.  Data analysis: C.N.-C., B.T.   
Japanese Millenium Genome Project.      Study concept/design: H.U., N.I., S.U., T.Ohkubo, 
T.Miki, T.Okamura, T.Ogihara, Y.T., Y.K.  Phenotype data acquisition/QC: T.Ohkubo, T.Okamura, 
Y.T., Y.K.  Genotype data acquisition/QC: N.I., T.Miki, Y.T.  Data analysis: Y.T.   
KidneyGen consortium. For complete acknowledgments see Chambers JC Nat Genet. 2010 
May;42(5):373-5 
KOoperative Gesundheitsforschung in der Region Augsburg.      Study concept/design: C.G., 
E.O., H.-E.W., M.Laan, T.Meitinger  Phenotype data acquisition/QC: H.-E.W.  Genotype data 
acquisition/QC: C.G., E.O., H.-E.W., M.Laan, T.Meitinger  Data analysis: S.Sõber, S.E.   
Korea Association REsource.      Study concept/design: B.G.H., H.-L.K.  Phenotype data 
acquisition/QC: J.-Y.L., Y.S.C.  Genotype data acquisition/QC: J.-Y.L., Y.S.C.  Data analysis: 
M.J.G., Y.S.C.   
KORKULA study.      Study concept/design: A.F.W., C.H., H.C., I.R.  Phenotype data 
acquisition/QC: C.H., I.R., O.P.  Genotype data acquisition/QC: C.H., H.C., I.R., O.P., V.V.  Data 
analysis: C.H., O.P., V.V.   
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LOndon LIfe Sciences POPulation study.      Phenotype data acquisition/QC: J.S., J.S.K., J.S.S., 
J.C.C., P.E.  Genotype data acquisition/QC: J.S., J.S.K., J.C.C., P.E., W.Z.  Data analysis: J.S., J.S.K., 
J.C.C., W.Z.   
Malmö Diet and Cancer study.      Study concept/design: O.M.  Phenotype data acquisition/QC: 
B.H., O.M., P.N.  Genotype data acquisition/QC: C.N.-C., C.F., M.Sjögren, O.M.  Data analysis: 
C.N.-C., C.F., M.Sjögren, O.M.   
Malmö Preventive Project.      Study concept/design: O.M.  Phenotype data acquisition/QC: B.H., 
O.M., P.N.  Genotype data acquisition/QC: C.N.-C., C.F., M.Sjögren, O.M.  Data analysis: C.N.-C., 
C.F., M.Sjögren, O.M.   
Medical Research Council National Survey of Health and Development.      Study concept/design: 
D.K., R.H.  Phenotype data acquisition/QC: D.K., R.H.  Genotype data acquisition/QC: A.W., D.K.  
Data analysis: A.W., R.H.   
Metabolic Syndrome in Men study.      Study concept/design: M.Laakso  Phenotype data 
acquisition/QC: J.Kuusisto, M.Laakso  Genotype data acquisition/QC: A.Stančáková, N.   
MICROS study (EUROSPAN).      Study concept/design: P.P.P.  Phenotype data acquisition/QC: 
P.P.P.  Genotype data acquisition/QC: A.A.H.  Data analysis: A.A.H.   
Multi-Ethnic Study of Atherosclerosis.      Study concept/design: J.I.R., L.J.R., W.P., X.G.  
Phenotype data acquisition/QC: J.Y., L.J.R., W.P., X.G.  Genotype data acquisition/QC: J.I.R., J.Y., 
L.J.R., X.G.  Data analysis: J.Y., W.P., X.G.   
Myocardial Infarction Genetics Consortium.      Study concept/design: C.O'D., D.A., O.M., R.E., 
S.Kathiresan, S.M.S., V.S.  Phenotype data acquisition/QC: C.O'D., D.A., G.L., O.M., R.E., 
S.Kathiresan, S.M.S., V.S.  Genotype data acquisition/QC: B.F.V., C.O'D., D.A., G.L., O.M., R.E., 
S.Kathiresan, S.M.S., V.S.  Data analysis: G.L.   
NEURO-CHARGE consortium.      Study concept/design: M.A.I., S.Seshadri, T.H.M., W.T.L.  
Phenotype data acquisition/QC: M.A.I., S.Seshadri, T.H.M., W.T.L.  Data analysis: M.A.I., 
S.Seshadri   
Nord-Trøndelag Health study.      Study concept/design: C.G.P.P., K.H.  Phenotype data 
acquisition/QC: C.G.P.P., K.H.  Genotype data acquisition/QC: A.J.S.   
North Finland Birth Cohort of 1966.      Study concept/design: M.R.J., P.Z.  Phenotype data 
acquisition/QC: A.-L.H., J.L., M.R.J., P.Z., P.E.  Genotype data acquisition/QC: A.-L.H., I.P., M.R.J., 
P.Z., P.E.  Data analysis: P.F.O'R.   
Northern Swedish Population Health Study (EUROSPAN).      Study concept/design: U.B.G.  
Phenotype data acquisition/QC: U.B.G.  Data analysis: W.I.   
Northwick Park Heart Study II.      Study concept/design: S.E.H.  Phenotype data acquisition/QC: 
J.A.C., P.J.T., S.E.H.  Genotype data acquisition/QC: J.P., P.J.T.  Data analysis: J.A.C.   
Orkney Complex Disease Study (EUROSPAN).      Study concept/design: J.F.W.  Phenotype data 
acquisition/QC: J.F.W., S.H.W.  Genotype data acquisition/QC: J.F.W.  Data analysis: J.F.W., S.H.W.   
Pakistan Risk of Myocardial Infarction Study.      Study concept/design: A.Rasheed, D.Saleheen, 
J.D.  Phenotype data acquisition/QC: A.Rasheed, D.Saleheen, J.D., M.A., P.D.  Genotype data 
acquisition/QC: D.Saleheen, J.D., M.A., P.D.  Data analysis: D.Saleheen, J.D., M.A.   
Precocious Coronary Artery Disease study.      Study concept/design: A.Hamsten, H.W., J.F.P., 
M.F.  Phenotype data acquisition/QC: A.Hamsten, J.F.P.  Genotype data acquisition/QC: A.G., J.F.P.  
Data analysis: A.G., J.F.P., M.F.   
Prevention of REnal and Vascular End-stage Disease study.      Study concept/design: G.N., 
P.v.d.H., S.J.L.B., W.H.v.G.  Phenotype data acquisition/QC: G.N., S.J.L.B., W.H.v.G.  Genotype 
data acquisition/QC: P.v.d.H.  Data analysis: P.v.d.H., S.J.L.B.   
Prospect-EPIC.      Phenotype data acquisition/QC: N.C.O-M., Y.T.vanderS.   
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Pune Maternal Nutritional Study.      Study concept/design: C.S.Y.  Phenotype data acquisition/QC: 
C.S.Y.  Genotype data acquisition/QC: C.S.J., G.R.C., K.R.M.  Data analysis: C.S.J., G.R.C.   
Rotterdam Extension Study.      Study concept/design: A.Hofman, B.A.O., C.M.vanD., J.C.M.W.  
Phenotype data acquisition/QC: C.M.vanD., E.J.G.S., F.M.-R., G.C.V., J.C.M.W.  Genotype data 
acquisition/QC: A.G.U., F.Rivadeneira  Data analysis: A.Dehghan, C.M.vanD., G.C.V., N.A., Y.A.   
Rotterdam lipidomics.      Phenotype data acquisition/QC: A.I., A.Demirkan  Data analysis: A.I., 
A.Demirkan   
Rotterdam Study.      Study concept/design: A.Hofman, B.A.O., C.M.vanD., J.C.M.W.  Phenotype 
data acquisition/QC: C.M.vanD., E.J.G.S., F.M.-R., G.C.V., J.C.M.W.  Genotype data 
acquisition/QC: A.G.U., F.Rivadeneira.  Data analysis: A.Dehghan, C.M.vanD., G.C.V., N.A., Y.A.   
SardiNIA study.      Study concept/design: E.G.L., G.R.A.  Phenotype data acquisition/QC: 
A.Scuteri, M.Orru  Genotype data acquisition/QC: G.R.A., M.U.  Data analysis: J.L.B.-G.   
Serum NMR metabonomics.      Phenotype data acquisition/QC: M.A.K., P.Soininen, A.J.K., 
T.Tukiainen.  Data analysis: M.A.K., P.Soininen, A.J.K., T.Tukiainen, L.P.L., P.W.   
Singapore Malay Eye Study.      Phenotype data acquisition/QC: T.Y.W.  Genotype data 
acquisition/QC: M.Seielstad, R.T-H.O., T.Y.W., X.S.  Data analysis: X.S.   
Singapore Prospective Study Program.      Study concept/design: E.S.T.  Phenotype data 
acquisition/QC: E.S.T.  Genotype data acquisition/QC: M.Seielstad, R.T-H.O., X.S.  Data analysis: 
X.S.   
SPLIT study.      Study concept/design: A.F.W., C.H., H.C., I.R.  Phenotype data acquisition/QC: 
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proposal No.: 037093 to Eva Brand and Stefan-Martin Brand-Herrmann and an ICT in the 
FP7-ICT-2007-2, project number 224635, VPH2—Virtual Pathological Heart of the Virtual 
Physiological Human, to Stefan-Martin Brand-Herrmann and Boris Schmitz. FUSION: We 
would like to thank the many Finnish volunteers who generously participated in the FUSION, 
D2D, Health 2000, Finrisk 1987, Finrisk 2002, and Savitaipale studies from which we chose 
our FUSION GWA and replication cohorts. The Center for Inherited Disease Research 
performed the GWA genotyping. Support for this study was provided by the following: NIH 
grants DK062370 (M.B.), and DK072193 (K.L.M.). Additional support comes from the 
National Human Genome Research Institute intramural project number 1Z01 HG000024 
(F.S.C). GRAPHIC: The GRAPHIC Study was funded by the British Heart Foundation. 
Genotyping for this analysis was funded by Medical Research Council grant G0501942. The 
GRAPHIC, YMCA and BRIGHT studies are part of the research portfolio supported by the 
Leicester NIHR Biomedical Research Unit in Cardiovascular Disease. MDT holds a Medical 
Research Council (MRC) Clinician Scientist Fellowship (G0501942). NJS holds a personal 
chair supported by the British Heart Foundation. HABC: This study was funded by the 
National Institutes of Aging.  This research was supported by NIA contracts N01AG62101, 
N01AG62103, and N01AG62106. The genome-wide association study was funded by NIA 
grant 1R01AG032098-01A1 to Wake Forest University Health Sciences and genotyping 
services were provided by the Center for Inherited Disease Research (CIDR). CIDR is fully 
funded through a federal contract from the National Institutes of Health to The Johns 
Hopkins University, contract number HHSN268200782096C. This research was also 
supported in part by the Intramural Research Program of the NIH, National Institute on 
Aging. HUFS: The study was supported by grants S06GM008016-320107 to CR and 
S06GM008016-380111 to AA, both from the NIGMS/MBRS/SCORE Program. Participant 
enrolment was carried out at the Howard University General Clinical Research Center 
(GCRC), which is supported by grant number 2M01RR010284 from the National Center for 
Research Resources (NCRR), a component of the National Institutes of Health (NIH). 
Additional support was provided by the Coriell Institute for Biomedical Sciences. This 
research was supported in part by the Intramural Research Program of the National Human 
Genome Research Institute, National Institutes of Health, in the Center for Research in 
Genomics and Global Health (Z01HG200362). The authors would like to thank participants 
in the Howard University Family Study (HUFS) and the HUFS field staff. The role of the 
Howard University General Clinical Research Center (GCRC) in participant enrolment is 
hereby acknowledged. HUNT 2: Nord-Trøndelag Health Study (The HUNT Study) is a 
collaboration between HUNT Research Centre (Faculty of Medicine, Norwegian University 
of Science and Technology NTNU), Nord-Trøndelag County Council and The Norwegian 
Institute of Public Health. HYPEST: The HYPEST study was financed by Wellcome Trust 
International Senior Research Fellow (grant no. 070191/Z/03/Z, to M.L) and Estonian 
Ministry of Education and Science core grant no. 0182721s06 (to M.L). E.O. is supported by 
Estonians Science Foundation (ETF7491) and M.V. is funded by Estonian core grant 
SF0140027s07 and the European Union European Regional Development Fund. Piret Kelgo 
is acknowledged for technical assistance. INTERGENE: Supported by grants from the 
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Västra Götaland County Council, Swedish Council for Working Life and Social Research 
(EpiLife), Swedish Research Council, Swedish Heart and Lung Foundation, and AstraZeneca 
R&D Sweden. InCHIANTI: The InCHIANTI study baseline (1998-2000) was supported as 
a "targeted project" (ICS110.1/RF97.71) by the Italian Ministry of Health and in part by the 
U.S. National Institute on Aging (Contracts: 263 MD 9164 and 263 MD 821336). IRAS: For 
the Insulin Resistance Atherosclerosis Family Study, we acknowledge the National Institutes 
of Health - National Heart Lung and Blood Institute grants R01HL060944, R01HL061019, 
R01HL060919, R01HL060894. Jamaicans-GXE and Jamaicans-SPT: We would like to 
acknowledge the assistance received from the project participants and the research staff of 
the Tropical Medicine Research Institute (TMRI) for their contribution to our research 
projects.  We would also like to thank Ilze Berzins for her assistance with specimen shipping, 
handling and analysis.  This work was supported by research grants from the NIH (HL45508; 
DK075787; HL53353; HL 54512). Genotyping and analysis were supported by departmental 
funds to C.N.-C from Massachusetts General Hospital.   JMGP: We greatly appreciate the 
efforts of Drs. Hitonobu Tomoike, Sumio Sugano and Shoji Tsuji in organization of this 
study. We would like to thank Drs. Yutaka Imai, Tomohiro Katsuya, Nobuhito Hirawa, 
Toshiyuki Miyata, Takayuki Morisaki, Katsuhi Tokunaga, Hirohito Metoki, Masahiro 
Kikuya, Takuo Hirose, Kei Asayama, Ken Sugimoto, Kei Kamide, Mitsuru Ohishi, Ryuichi 
Morishita, Hiromi Rakugi, Yasuyuki Nakamura, Shinji Tamaki, Kenji Matsui, T.C.Tuirin, N 
Rumana, Nobuyuki Takashima, Tadashi Shiwa, Momoko Ogawa, Keisuke Yatsu, Sanae 
Saka, Yoshiko Miyazaki, Yumiko Hiura, Yoshihiro Kokubo, Iimori-Tachibana-Rieko, Jun 
Nakura and Katsuhiko Kohara for their continued support in this research.  This work was 
supported by Grants for Scientific Research (Priority Areas "Medical Genome Science 
(Millennium Genome Project)" and "Applied Genomics", Leading Project for Personalized 
Medicine, and Scientific Research 20390185, 21390099, 19659163, 16790336, 12204008, 
15790293, 16590433, 17790381, 17790381, 18390192, 18590265, 18590587, 18590811, 
19590929, 19650188, 19790423, 17390186, 20390184 and 21390223) from the Ministry of 
Education, Culture, Sports, Science, and Technology, Japan; a Grants-in-Aid (H15-
Longevity-005, H17-longevity-003, H16-kenko-001, H18-longevity (kokusai), H11-
longevity-020, H17-Kenkou-007, H17-pharmaco-common-003, H18-Junkankitou[Seishuu]-
Ippan-012 and H20-Junkankitou[Seishuu]-Ippan-009, 013) from the Ministry of Health, 
Labor and Welfare, Health and Labor Sciences Research Grants, Japan; a Science and 
Technology Incubation Program in Advanced Regions, Japan Science and Technology 
Agency; The Program for Promotion of Fundamental Studies in Health Sciences of the 
National Institute of Biomedical Innovation (NIBIO); a Grants-in-Aid from the Japan Society 
for the Promotion of Science (JSPS) fellows (16.54041, 18.54042, 19.7152, 20.7198, 20.7477 
and 20.54043), Tokyo, Japan; Health Science Research Grants and Medical Technology 
Evaluation Research Grants from the Ministry of Health, Labor and Welfare, Japan; the 
Japan Atherosclerosis Prevention Fund; the Uehara Memorial Foundation; the Takeda 
Medical Research Foundation; National Cardiovascular Research Grants; Biomedical 
Innovation Grants; and the Japan Research Foundation for Clinical Pharmacology. KARE 
study: The KARE study was supported by a grant from the Ministry for Health, Welfare and 
Family Affairs, Republic of Korea (4845-301-430-260-00). KORA: Kooperative 
Gesundheitsforschung in der Region Augsburg. The KORA 500K blood pressure study was 
supported by Wellcome Trust International Senior Research Fellow (grant no. 
070191/Z/03/Z, to M.L) in Biomedical Science in Central Europe and by Alexander-von-
Humboldt Foundation partnership (grant no. V-Fokoop-EST/1051368, V-Fokoop-1113183 to 
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M.L. and T.M). Additionally, the study has been supported by Estonian Ministry of 
Education and Science core grant no. 0182721s06, HHMI International Scholarship 
#55005617 (to M.L.) and Estonian Science Foundation grant no ETF7491 (to E.O.). The 
KORA Augsburg studies were financed by the Helmholtz Zentrum München, German 
Research Center for Environmental Health, Neuherberg, Germany and supported by grants 
from the German Federal Ministry of Education and Research (BMBF). The KORA study 
group consists of H-E. Wichmann (speaker), A. Peters, C. Meisinger, T. Illig, R. Holle, J. 
John and co-workers who are responsible for the design and conduct of the KORA studies. 
Part of this work was financed by the German National Genome Research Network (NGFN-2 
and NGFNPlus:01GS0823) and supported within the Munich Center of Health Sciences (MC 
Health) as part of LMUinnovativ. S.E. is funded by Fondecyt, project number 11085012. 
KORCULA:This study was supported through the grants from the Medical Research 
Council UK; and Ministry of Science, Education and Sport of the Republic of Croatia (no. 
108-1080315-0302). We would like to acknowledge the invaluable contributions of the 
recruitment team in Korcula, the administrative teams in Croatia and Edinburgh and the 
people of Korcula The albuminuria measurements were supported by grants from the Belgian 
agencies FNRS and FRSM (3.4.592.06F), the `Fondation Alphonse & Jean Forton´, the 
Programme d´excellence "Marshall" DIANE convention from the Region Walonne, the Inter-
university Attraction Pole (IUAP P6/05), and the Genecure (FP6) and EUNEFRON (FP7, 
GA#201590) programs of the European Community. We would also like to thank S. Druart 
and N. Amraoui for excellent technical assistance. LOLIPOP: We thank the participants and 
research team involved in LOLIPOP. The LOLIPOP study was supported by the British 
Heart Foundation (SP/04/002) and by the Wellcome Trust. MDC and MPP: Dr Melander 
(MDC/MPP) was supported by grants from the Swedish Medical Research Council, the 
Swedish Heart and Lung Foundation, the Medical Faculty of Lund University, Malmö 
University Hospital, the Albert Påhlsson Research Foundation, the Crafoord foundation, the 
Ernhold Lundströms Research Foundation, the Region Skane, the Hulda and Conrad 
Mossfelt Foundation, the King Gustaf V and Queen Victoria Foundation, the Lennart 
Hanssons Memorial Fund, and the Marianne and Marcus Wallenberg Foundation. 
Genotyping of MDC was supported by departmental funds to C.N.-C from Massachusetts 
General Hospital.  MESA and the MESA SHARe project are conducted and supported by the 
National Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA 
investigators. Support is provided by grants and contracts N01 HC-95159, N01-HC-95160, 
N01-HC-95161, N01-HC-95162, N01-HC-95163, N01-HC-95164, N01-HC-95165, N01-
HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169 and RR-024156.  Funding for 
SHARe genotyping was provided by NHLBI Contract N02-HL-6-4278. Genotyping was 
performed at the Broad Institute of Harvard and MIT (Boston, Massachusetts, USA) and at 
Affymetrix (Santa Clara, California, USA).  MESA Family is conducted and supported by 
the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA 
investigators. Support is provided by grants and contracts R01HL071051, R01HL071205, 
R01HL071250, R01HL071251, R01HL071252, R01HL071258, R01HL071259.  METSIM: 
The METSIM study was funded by the Academy of Finland (grant no.77299 and 124243).  
MICROS (EUROSPAN):For the MICROS study, we thank the primary care practitioners: 
Raffaela Stocker, Stefan Waldner, Toni Pizzecco, Josef Plangger, Ugo Marcadent and the 
personnel of the Hospital of Silandro (Department of Laboratory Medicine) for their 
participation and collaboration in the research project. In South Tyrol, the study was 
supported by the Ministry of Health and Department of Educational Assistance, University 
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and Research of the Autonomous Province of Bolzano and the South Tyrolean Sparkasse 
Foundation.  MIGen: The MIGen study was funded by the U.S. National Institutes of Health 
(NIH) and National Heart, Lung, and Blood Institute's STAMPEED genomics research 
program through a grant to D.A. S.K. is supported by a Doris Duke Charitable Foundation 
Clinical Scientist Development Award, a charitable gift from the Fannie E. Rippel 
Foundation, the Donovan Family Foundation, a career development award from the NIH, and 
institutional support from the Department of Medicine and Cardiovascular Research Center 
at Massachusetts General Hospital. Genotyping was partially funded by The Broad Institute 
Center for Genotyping and Analysis, which is supported by grant U54 RR020278 from the 
National Center for Research Resources. V.S. was supported by the Sigrid Juselius 
Foundation and the Finnish Foundation for Cardiovascular Research. The REGICOR study 
was partially funded by the Ministerio de Sanidad y Consumo, Instituto de Salud Carlos III 
(Red HERACLES RD06/0009), Fundació Marató TV3, Fondos FEDER Unión Europea, the 
CIBER Epidemiología y Salud Pública, the FIS (CP05/00290, PI061254), and AGAUR 
(SGR 2005/00577); G.L. is supported by the Juan de la Cierva Program, Ministerio de 
Educación. The HARPS study was supported by grants and contracts from the US NIH 
(R01HL056931, P30ES007033, N01-HD-1-3107). MRC NSHD: The MRC National Survey 
of Health and Development is funded by the UK Medical Research Council. RH, DK and 
AW are funded by the UK Medical Research Council. NFBC 1966:We thank Professor 
Paula Rantakallio (launch of NFBC1966 and initial data collection), Ms Sarianna Vaara (data 
collection), Ms Tuula Ylitalo (administration), Mr Markku Koiranen (data management), Ms 
Outi Tornwall, and Ms Minttu Jussila (DNA biobanking). Financial support: The Academy 
of Finland (project grants 104781, 120315, 129269 Center of Excellence in Complex Disease 
Genetics), University Hospital Oulu, Biocenter, University of Oulu, Finland (75617), The 
European Commission (EURO-BLCS, Framework 5 award QLG1-CT-2000-01643), NHLBI 
grant 5R01HL087679-02 through the STAMPEED program (1RL1MH083268-01), 
NIH/NIMH (5R01MH63706:02), ENGAGE project and grant agreement HEALTH-F4-2007-
201413,Medical Research Council UK (Grants G0500539, G0600331, PrevMetSyn). The 
DNA extractions, sample quality controls, biobank up-keeping and aliquotting were 
performed in the National Public Health Institute, Biomedicum Helsinki, Finland and 
supported financially by the Academy of Finland and Biocentrum Helsinki. The funders had 
no role in study design, data collection and analysis, decision to publish, or preparation of the 
manuscript. Nigerians: We would like to acknowledge the assistance received for the 
research staff and participants in Igbo-Ora, Oyo State, Nigeria.   We would also like to thank 
Izle Berzins for her assistance with specimen shipping, handling and analysis.   This work 
was supported by research grants from the NIH (HL45508; DK075787; HL53353; HL 
54512). NPHSII: NPHSII was supported by the UK Medical Research Council, the US 
National Institutes of Health (grant NHLBI 33014) and Du Pont Pharma, Wilmington, USA.  
PJT, SEH, JAC and JP are supported by the British Heart Foundation (RG08/014). NSPHS 
(EUROSPAN): This study was funded by the Swedish Medical Research Council, European 
Commission (EUROSPAN). ORCADES (EUROSPAN): ORCADES was supported by the 
Chief Scientist Office of the Scottish Government (CZB/4/276), the Royal Society and the 
European Union framework program 6 EUROSPAN project (contract no. LSHG-CT-2006-
018947). DNA extractions were performed at the Wellcome Trust Clinical Research Facility 
in Edinburgh. We would like to acknowledge the invaluable contributions of Lorraine 
Anderson and the research nurses in Orkney, the administrative team in Edinburgh and the 
people of Orkney. PREVEND:PREVEND genetics is supported by the Dutch Kidney 
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Foundation (Grant E033), The Netherlands Heart Foundation (Grant 2006B140, 2006T003) 
and the EU project grant GENECURE (FP-6 LSHM CT 2006 037697).  P.vd.H is supported 
by NWO VENI grant 916.76.170 and ICIN. PROCARDIS: PROCARDIS was supported by 
the European Community Sixth Framework Program (LSHM-CT- 2007-037273), 
AstraZeneca, the Swedish Research Council, the Knut and Alice Wallenberg Foundation, the 
Swedish Heartsung Foundation, the Torsten and Ragnar Söderberg Foundation, the Strategic 
Cardiovascular Program of Karolinska Institutet and Stockholm County Council, the 
Foundation for Strategic Research and the Stockholm County Council (560283). R Collins, 
M Farrall, A Hamsten, and H Watkins are supported by the British Heart Foundation Centre 
for Research Excellence; JF Peden, M Farrall and H Watkins acknowledge support from the 
Wellcome Trust; R Collins acknowledges support from the MRC. PROMIS: We are grateful 
to all the study participants and co-investigators at the different collaborating institutes in 
Pakistan. Epidemiological fieldwork in PROMIS has been supported by unrestricted grants to 
investigators at the University of Cambridge, UK and at the Centre for Non-Communicable 
Diseases, Pakistan. Genotyping in PROMIS was supported by the Wellcome Trust. 
PROSPECT-EPIC: Prospect-EPIC was funded by the European Commission - Europe 
Against Cancer: WHO AEP/90/05; the Dutch Ministry of Public Health, Welfare and Sports 
(VWS), the Netherlands Cancer Registry (NKR), LK Research Funds, Dutch Prevention 
Funds, Dutch ZON (Zorg Onderzoek Nederland), and World Cancer Research Fund (WCRF) 
(The Netherlands).  Genotyping for this project was funded through an Incentive Grant from 
the Board of the UMC Utrecht. RS: The Rotterdam Study is supported by the Erasmus 
Medical Center and Erasmus University Rotterdam; the Netherlands Organization for 
Scientific Research; the Netherlands Organization for Health Research and Development 
(ZonMw); the Research Institute for Diseases in the Elderly; The Netherlands Heart 
Foundation; the Ministry of Education, Culture and Science; the Ministry of Health Welfare 
and Sports; the European Commission; and the Municipality of Rotterdam. Support for 
genotyping was provided by the Netherlands Organization for Scientific Research (NWO 
Groot, 175.010.2005.011, 911.03.012) and Research Institute for Diseases in the Elderly 
(014.93.015; RIDE2). This study was supported by the Netherlands Genomics Initiative 
(NGI)/Netherlands Organisation for Scientific Research (NWO) project nr. 050-060-810. We 
thank Pascal Arp, Mila Jhamai, Michael Moorhouse, Marijn Verkerk and Sander Bervoets 
for their help in creating the database and Maxim Struchalin for his contributions to the 
imputations of the data.  Further financial support was obtained from the Netherlands Heart 
Foundation nr. 2009B102.  SardNIA: We warmly thank Monsignore Piseddu, Bishop of 
Ogliastra; Mayor Enrico Lai and his administration in Lanusei for providing and furnishing 
the clinic site; the mayors of Ilbono, Arzana, and Elini; the head of the local Public Health 
Unit Ar1; and the residents of the towns for their volunteerism and cooperation. We also 
thank Harold Spurgeon and Paul Pullen for invaluable help with equipment and readings, and 
Michele Evans and Dan Longo for helpful discussions. This work was supported by the 
Intramural Research Program of the National Institute on Aging, NIH. The SardiNIA 
(‘‘Progenia’’) team was supported by Contract NO1-AG-1–2109 from the National Institute 
on Aging. The efforts of JBG and GRA, were supported in part by contract 263-MA-410953 
from the National Institute on Aging to the University of Michigan and by research grants 
HG005581 and HL084729 from the National Institutes of Health (to GRA).  SHIP: SHIP is 
part of the Community Medicine Research net of the University of Greifswald, Germany, 
which is funded by the Federal Ministry of Educationand Research (grants no. 01ZZ9603, 
01ZZ0103, and 01ZZ0403), the Ministry of Cultural Affairs as well as the Social Ministry of 
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the Federal State of Mecklenburg-West Pomerania. Genome-wide data have been supported 
by the Federal Ministry of Education and Research (grant no. 03ZIK012) and a joint grant 
from Siemens Healthcare, Erlangen, Germany and the Federal State of Mecklenburg-West 
Pomerania. The University of Greifswald is a member of the ‘Center of Knowledge 
Interchange’ program of the Siemens AG. SiMES: SiMES is funded by a National Medical 
Research Council (NMRC) 0796/2003, and Biomedical Research Council (BMRC), 
09/1/35/19/616, Singapore.  We thank the Genome Institute of Singapore, Agency for 
Science, Technology and Research, Singapore for genotyping. SP2: SP2 is funded by a grant 
from the Biomedical Research Council of Singpaore (grant nos.  BMRC Grant No 
03/1/27/18/216 and BMRC 05/1/36/19/413).  The Singapore Tissue Network provided 
services for tissue archival and DNA extraction. We thank the Genome Institute of 
Singapore, Agency for Science, Technology and Research, Singapore for genotyping. 
SPLIT:This study was supported through the grants from the Medical Research Council UK; 
and Ministry of Science, Education and Sport of the Republic of Croatia. (no. 108-1080315-
0302). We would like to acknowledge the invaluable contributions of the recruitment team 
from the Croatian Centre for Global Health, University of Split, the administrative teams in 
Croatia and Edinburgh (Rosa Bisset) and the people of Split. The albuminuria measurements 
were supported by grants from the Belgian agencies FNRS and FRSM (3.4.592.06F), the 
`Fondation Alphonse & Jean Forton´, the Programme d´excellence "Marshall" DIANE 
convention from the Region Walonne, the Inter-university Attraction Pole (IUAP P6/05), and 
the Genecure (FP6) and EUNEFRON (FP7, GA#201590) programs of the European 
Community. We would also like to thank S. Druart and N. Amraoui for excellent technical 
assistance. SU.VI.MAX: The suvimax cohort team received funding from the French Institut 
National de la Santé et de la Recherche Médicale, the Institut National de la Recherche 
Agronomique, the Université Paris 13 and the Commissariat à L'Energie Atomique. 
TwinsUK: The study was funded by the Wellcome Trust, Arthritis Research Campaign, 
European Community’s Seventh Framework Programme (FP7/2007-2013)/grant agreement 
HEALTH-F2-2008-201865-GEFOS and EC Framework 7programme grant 200800 Treat 
OA /(FP7/2007-2013), ENGAGE project grant agreement HEALTH-F4-2007-201413 and 
the FP-5 GenomEUtwin Project (QLG2-CT-2002-01254). The study also receives support 
from the Dept of Health via the National Institute for Health Research (NIHR) 
comprehensive Biomedical Research Centre award to Guy's & St Thomas' NHS Foundation 
Trust in partnership with King's College London. TDS is an NIHR senior Investigator. The 
project also received support from a Biotechnology and Biological Sciences Research 
Council (BBSRC) project grant. (G20234) .The authors acknowledge the funding and 
support of the National Eye Institute via an NIH/CIDR genotyping project (PI: Terri Young). 
We thank the staff from the Genotyping Facilities at the Wellcome Trust Sanger Institute for 
sample preparation, Quality Control and Genotyping led by Leena Peltonen and Panos 
Deloukas; Le Centre National de Génotypage, France, led by Mark Lathrop, for genotyping; 
Duke University, North Carolina, USA, led by David Goldstein, for genotyping; and the 
Finnish Institute of Molecular Medicine, Finnish Genome Centre, University of Helsinki, led 
by Aarno Palotie. Genotyping was also NEI/NIH project grant. VIS (EUROSPAN): This 
research was funded by Grants from the Medical Research Council (UK) to Prof Alan Wright 
and from the Republic of Croatia Ministry of Science, Education and Sports to Prof Igor 
Rudan (108-1080315-0302). We acknowledge Prof. Pavao Rudan, Dr. Nina Smolej-
Narancic, Dr. Branka Janicijevic and their colleagues at the Institute for Anthropological 
Research 10000 Zagreb, Croatia for participants’ recruitment and field work, Dr. Ozren 
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Polasek and Dr. Ivana Kolcic from Zagreb University for data collection and management, 
Susan Campbell (MRC HGU Edinburgh) for samples management, the Wellcome Trust 
Clinical Research Facility (Edinburgh) for performing the initial SNP genotyping. This study 
is currently a component of the EU framework 6 project EUROSPAN (contract no LSHG-
CT-2006-018947) within which imputation of additional SNP markers was performed thanks 
to Dr. Yurii Aulchenko (Erasmus Medical Center, Rotterdam). WGHS: The WGHS is 
funded by the Donald W. Reynolds Foundation (Las Vegas, NV), the Fondation LeDucq 
(Paris, France), the National Heart, Lung and Blood Institute (NHLBI; HL043851) and the 
National Cancer Institute (NCI; CA047988). Funding for genotyping and collaborative 
scientific support was provided by Amgen. WH II:The WH-II study has been supported by 
grants from the Medical Research Council; British Heart Foundation; Health and Safety 
Executive; Department of Health; National Institute on Aging, NIH, US (AG13196); Agency 
for Health Care Policy Research (HS06516); and the John D. and Catherine T. MacArthur 
Foundation Research Networks on Successful Midlife Development and Socio-economic 
Status and Health. M. Kumari’s time on this manuscript was partially supported by the 
National Heart Lung and Blood Institute (NHLBI: HL36310). YFS: Academy of Finland 
(grant no. 117797, 121584 and 126925), the Social Insurance Institution of Finland, 
University Hospital Medical funds to Tampere, and Turku University Hospitals, the Finnish 
Foundation of Cardiovascular Research. the Emil Aaaltonen Foundation (T.L.) 
YMCA:Genotyping was supported by NIH Fogarty International Research Collaboration 
Award (R03 TW007165 to M.T.) and British Heart Foundation grant (CH/03/001 to N.J.S). 
Non-cohort. Martin D Tobin has been supported by MRC fellowships G0501942 and 
G0902313. 
Look up consortia. CARDIoGRAM:The ADVANCE study was supported by a grant from 
the Reynold's Foundation and NHLBI grant HL087647. Genetic analyses of CADomics were 
supported by a research grant from Boehringer Ingelheim. Recruitment and analysis of the 
CADomics cohort was supported by grants from Boehringer Ingelheim and PHILIPS medical 
Systems, by the Government of Rheinland-Pfalz in the context of the “Stiftung Rheinland-
Pfalz für Innovation”, the research program “Wissen schafft Zukunft” and by the Johannes-
Gutenberg University of Mainz in the context of the “Schwerpunkt Vaskuläre Prävention” 
and the “MAIFOR grant 2001”, by grants from the Fondation de France, the French Ministry 
of Research, and the Institut National de la Santé et de la Recherche Médicale. The deCODE 
CAD/MI Study was sponsored by NIH grant, National Heart, Lung and Blood Institute 
R01HL089650-02. The German MI Family Studies (GerMIFS I-III (KORA)) were supported 
by the Deutsche Forschungsgemeinschaft and the German Federal Ministry of Education and 
Research (BMBF) in the context of the German National Genome Research Network 
(NGFN-2 and NGFN-plus) and the EU funded integrated project Cardiogenics (LSHM-CT-
2006-037593). The KORA research platform (KORA, Cooperative Research in the Region of 
Augsburg) was initiated and financed by the GSF-National Research Centre for Environment 
and Health, which is funded by the German Federal Ministry of Education and Research and 
of the State of Bavaria. LURIC has received funding from the EU framework 6 funded 
Integrated Project “Bloodomics” (LSHM-CT-2004-503485), the EU framework 7 funded 
Integrated Project AtheroRemo  (HEALTH-F2-2008-201668) and from  Sanofi/Aventis, 
Roche, Dade Behring/Siemens, and AstraZeneca. The MIGen study was funded by the US 
National Institutes of Health (NIH) and National Heart, Lung, and Blood Institute’s 
STAMPEED genomics research program and genotyping was partially funded by The Broad 
Institute Center for Genotyping and Analysis, which is supported by grant U54 RR020278 
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from the National Center for Research Resources. Recruitment of PennCATH was supported 
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Appendix A: Estimating number of

as-yet-undiscovered signals

A.1 Introduction

Our approach to estimating the total number of independent signals associated with contin-

uous blood pressure phenotypes, and the total fraction variance explained, is based on the

approach described recently by Park et al. [2010]. The underlying principle is as follows:

For a set of signals detected in a discovery GWAS, data independent of the data used for

discovery is free of bias caused by the winners’ curse effect, and therefore can be used to

consistently estimate the true effect sizes. This allows consistent estimates of the power of

the discovery GWAS to detect each of the signals that was detected. For the i-th signal de-

tected, knowing that there was discovery power Bi implies a natural estimate that there are

Mi = 1/Bi signals with similar effect sizes, of which by chance one was detected and Mi− 1

were not detected. Summing over the set of signals detected gives M =
∑

iMi =
∑

i 1/Bi,

which is an estimate of the total number of associated signals with effect sizes similar to

those detected.

The estimate M =
∑

i 1/Bi is extremely sensitive to both the number of signals detected

for which Bi is small, and also to the numerical estimates of Bi for such signals. Consider, for

example, a set of discoveries where the true detection power for the first signal is B1 = 0.02.

Then, either (i) using an underestimate B1 = 0.01 for this signal, or (ii) including this signal

when it was not in fact discovered by the process that has detection power B1 = 0.02, but

was in fact discovered by analysis of e.g. a different phenotype, would both result in an

upward bias in M such that an incorrect additional 50 signals would be estimated to exist.

Park et al. [2010] did not give any explicit expressions for discovery power Bi, remark-

ing only that the use of standard power calculation tools is sufficient. This applies for a

relatively idealised scenario, where a discovery GWAS was followed by a validation study

with extremely large sample size, in which validation was attempted for all independent sig-
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nals attaining a pre-specified P -value threshold. More precisely, standard power calculation

tools would be adequate for calculating the Bi when it can be assumed that (i) validation

genotyping was undertaken if and only if the association P -value, for a single phenotype

studied, was smaller than some prespecified constant α in the discovery GWAS, and (ii)

the validation genotyping establishes without error the true effect size (and therefore also

true/false status and true discovery power) for each signal discovered. Although applying the

principle underlying the method of Park et al. [2010] does not require these assumptions, it

is nonetheless clear that to minimise the source of bias in M described above, it is necessary

to undertake realistic modelling of the discovery process that gave rise to the data being

analysed. In the following sections, we describe how we estimated discovery power for the

ICBP-GWAS study, which (i) analysed two phenotypes, SBP and DBP, in parallel, (ii) did

not have a strict P -value threshold below which all signals were taken into the validation

stages of the study, and (iii) acquired relatively little validation data for some previously

reported signals.

Although both non-parametric and parametric extensions to the basic estimation method-

ology were proposed by Park et al. [2010], these extensions are essentially smoothing proce-

dures that are intended to improve the estimation of the shape of the distribution of effect

sizes, and do not directly address the problem of bias in M caused by underestimation of

discovery power.

A.2 Effect size estimates free of winners’ curse bias

Our estimate of the total number of independent signals associated with blood pressure is

based essentially only on the observation that the ICBP-GWAS discovery analysis (stage

0, see Supplementary Figure 1) led to the discovery of 29 associated signals1 (see Table 1).

Discoveries made previously in subsets of the ICBP-GWAS discovery dataset, namely the

discoveries of Newton-Cheh et al. [2009] and of Levy et al. [2009], are relevant only insofar

as they allow larger datasets to be declared free of winners’ curse bias, and thus allow more

precise estimates of true effect size and discovery power.

For signals discovered for the first time in the present study, we excluded all data used in

the discovery GWAS meta-analysis (stage 0), and estimated effect sizes free of bias from the

winners’ curse effect by using data from the validation stages 1–3 only.

A total of thirteen independent signals associated with blood pressure were discovered

in previous analyses [Newton-Cheh et al. 2009, Levy et al. 2009], of which we exclude one

(PLCD3; rs12946454) that is likely to have been a false positive. The strength of evidence

1We define a signal here as a statistically independent associated variant, and thus by this definition there
are two associated signals in the CACNB2 gene region.
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from previous studies meant that the additional validation data for these signals that was

acquired during stages 1–3 of the present study comprised relatively small sample sizes.

Using these small sample sizes alone would have yielded effect size estimates with an unnec-

cessary lack of precision. We therefore took into account the historic discovery process, and

separately for each association we estimated an effect size using the largest data set that we

considered to be free of the winners’ curse effect. Specifically, we these were as follows:

Four signals were discovered previously by the Global BPgen consortium, namely MTHFR-

NPPB (rs17367504), FGF5 (rs1458038), C10orf107 (rs4590817), and ZNF652 (rs12940887)

[Newton-Cheh et al. 2009], and we reasoned that a meta-analysis excluding the discovery

data used by Global BPgen would be relatively free of winners’ curse effects and would

yield reasonably unbiased effect size estimates. Likewise, five signals were discovered previ-

ously by the CHARGE consortium, namely ULK4 (rs3774372), CACNB2(3’) (rs1813353),

PLEKHA7 (rs381815), ATP2B1 (rs17249754) and TBX5-TBX3 (rs10850411) [Levy et al.

2009], and therefore we meta-analysed excluding the discovery data used by CHARGE to

obtain reasonably unbiased effect size estimates.

Three signals were discovered previously by both Global BPgen and CHARGE con-

sortia, namely CYP17A1-NT5C2 (rs11191548), SH2B3 (rs3184504), and CYP1A1-ULK3

(rs1378942) [Newton-Cheh et al. 2009, Levy et al. 2009]. Discovery by Global BPgen implies

that the CHARGE data should provide an estimate of effect size free of winners’ curse bias,

and discovery by CHARGE implies that the Global BPgen data should also provide an esti-

mate of effect size free of winners’ curse bias. By this logic, both discovery datasets provide

unbiased effect size estimates, and for these signals we therefore estimated effect sizes from

a meta-analysis of all available data.

The phenotypic correlation between SBP and DBP means that test statistics and effect

size estimates for the two phenotypes are correlated, and therefore we used the same dataset

exclusions to estimate effect sizes for both phenotypes, regardless of which phenotype was

analysed when each signal was first discovered.

A.3 Variance explained

We assume Hardy–Weinberg proportions, so that the additive genetic variance for a given

phenotype contributed by the i-th signal is 2pi(1−pi)β2
i , where pi is the minor allele frequency

pi and βi is the per-allele additive effect on the given phenotype. The fraction of phenotypic

variance explained is then simply R2
i = 2pi(1− pi)β2

i /V , where V is the phenotypic variance

for the given phenotype (after adjustment for medication and correction for other covariates).

This can be summed over independent signals, so the total variance explained by the inferred

number of (discovered and as-yet-undiscovered) signals is simply R2
M =

∑
iMiR

2
i .
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Table A.1: Estimates of effect sizes on DBP, based on all data (not used for this analysis
but shown for comparison) and on data free from winners’ curse bias. Discovery
power depends on true effect size and also on the standard error for the discovery
analysis (σD). All sample sizes (N) are effective sample sizes.

index SNP All data Excluding winners’ curse Discovery

N β̂
(all)
D SE N β̂D SE (sD) N σD

rs17367504 125369 -0.547 0.0611 91262G -0.561 0.0691 69718 0.0861
rs2932538 194654 0.24 0.0392 129872I 0.203 0.0466 64782 0.0725
rs13082711 198084 -0.238 0.0403 132696I -0.18 0.0479 65388 0.0746
rs3774372 162073 -0.367 0.0492 131889C -0.338 0.0526 69728 0.0797
rs419076 193714 0.241 0.0344 124412I 0.206 0.0415 69302 0.0614
rs1458038 139670 0.457 0.0444 108820G 0.434 0.0489 63514 0.0702
rs13107325 150918 -0.684 0.0807 92000I -0.707 0.1025 58917 0.1308
rs13139571 185408 0.26 0.041 118270I 0.208 0.0496 67137 0.0726
rs1173771 158658 0.261 0.0382 89572I 0.281 0.0483 69086 0.0625
rs11953630 161073 -0.281 0.0387 91938I -0.278 0.0488 69135 0.0635
rs1799945 143761 0.457 0.0573 76902I 0.44 0.0754 66860 0.0882
rs805303 201727 0.228 0.0343 132352I 0.219 0.0409 69376 0.0632
rs4373814 188373 -0.218 0.035 121006I -0.195 0.0422 67368 0.0625
rs1813353 101835 0.415 0.0523 72548C 0.394 0.0589 67747 0.0668
rs4590817 111034 0.419 0.0591 77088G 0.372 0.0666 68502 0.0842
rs932764 160871 0.185 0.0374 91718I 0.207 0.047 69154 0.0618
rs11191548 161702 0.464 0.065 161702n 0.464 0.065 67829 0.1101
rs7129220 182867 -0.299 0.0552 118800I -0.294 0.0663 64067 0.0999
rs381815 97144 0.348 0.0561 67312C 0.283 0.0637 68819 0.0697
rs633185 160448 -0.328 0.0412 91972I -0.348 0.0519 68477 0.068
rs17249754 96416 0.522 0.0676 67619C 0.456 0.0774 68085 0.0842
rs3184504 120604 0.448 0.0432 120604n 0.448 0.0432 65005 0.0629
rs10850411 161136 0.253 0.0407 132844C 0.216 0.0435 65825 0.0683
rs1378942 163120 0.416 0.0392 163120n 0.416 0.0392 69386 0.064
rs2521501 127201 0.359 0.0451 88498I 0.332 0.053 38703 0.0858
rs17608766 151818 -0.129 0.054 92348I -0.071 0.0671 59470 0.091
rs12940887 188169 0.27 0.0354 154411G 0.246 0.0382 68414 0.0636
rs1327235 158466 0.302 0.0378 89616I 0.302 0.0479 68850 0.0615
rs6015450 159170 0.557 0.0564 92294I 0.623 0.0699 66877 0.0955

Notes:

I excluding all ICBP GWAS discovery (stage 0) data

C excluding CHARGE discovery GWAS of Levy et al. [2009]

G excluding Global BPgen discovery GWAS of Newton-Cheh et al. [2009]

n no exclusions
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Table A.2: Estimates of effect sizes on SBP, based on all data (not used for this analysis
but shown for comparison) and on data free from winners’ curse bias. Discovery
power depends on true effect size and also on the standard error for the discovery
analysis (σS). All sample sizes (N) are effective sample sizes.

index SNP All data Excluding winners’ curse Discovery

N β̂
(all)
S SE N β̂S SE (sS) N σS

rs17367504 125369 -0.903 0.0942 91262G -0.95 0.1079 69718 0.1356
rs2932538 194654 0.388 0.0638 129872I 0.321 0.0768 64782 0.1147
rs13082711 198084 -0.315 0.0655 132696I -0.318 0.0787 65388 0.1182
rs3774372 162073 -0.067 0.0783 131889C -0.073 0.083 69728 0.1247
rs419076 193714 0.409 0.0555 124412I 0.355 0.0678 69302 0.0967
rs1458038 139670 0.706 0.0705 108820G 0.732 0.0792 63514 0.1106
rs13107325 150918 -0.981 0.1293 92000I -0.923 0.1649 58917 0.2084
rs13139571 185408 0.321 0.0661 118270I 0.266 0.0809 67137 0.1144
rs1173771 158658 0.504 0.0612 89572I 0.495 0.0781 69086 0.0986
rs11953630 161073 -0.412 0.062 91938I -0.357 0.0789 69135 0.1002
rs1799945 143761 0.627 0.0916 76902I 0.649 0.1214 66860 0.1396
rs805303 201727 0.376 0.0556 132352I 0.327 0.0671 69376 0.0996
rs4373814 188373 -0.373 0.0567 121006I -0.318 0.0692 67368 0.0986
rs1813353 101835 0.569 0.0812 72548C 0.489 0.0895 67747 0.1051
rs4590817 111034 0.646 0.0931 77088G 0.626 0.1066 68502 0.1332
rs932764 160871 0.484 0.0599 91718I 0.471 0.0759 69154 0.0976
rs11191548 161702 1.095 0.1041 161702n 1.095 0.1041 67829 0.1742
rs7129220 182867 -0.619 0.0886 118800I -0.52 0.1079 64067 0.1555
rs381815 97144 0.575 0.0876 67312C 0.485 0.0972 68819 0.1098
rs633185 160448 -0.565 0.066 91972I -0.553 0.0838 68477 0.1073
rs17249754 96416 0.928 0.1059 67619C 0.763 0.119 68085 0.1339
rs3184504 120604 0.598 0.0688 120604n 0.598 0.0688 65005 0.0993
rs10850411 161136 0.354 0.0651 132844C 0.322 0.069 65825 0.1076
rs1378942 163120 0.613 0.0621 163120n 0.613 0.0621 69386 0.1006
rs2521501 127201 0.65 0.073 88498I 0.62 0.0862 38703 0.1369
rs17608766 151818 -0.556 0.0863 92348I -0.47 0.1084 59470 0.1424
rs12940887 188169 0.362 0.0568 154411G 0.354 0.0621 68414 0.1002
rs1327235 158466 0.34 0.0605 89616I 0.329 0.0774 68850 0.0971
rs6015450 159170 0.896 0.0905 92294I 0.951 0.1134 66877 0.1502

Notes:

I excluding all ICBP GWAS discovery (stage 0) data

C excluding CHARGE discovery GWAS of Levy et al. [2009]

G excluding Global BPgen discovery GWAS of Newton-Cheh et al. [2009]

n no exclusions
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We obtained residual phenotypic variances applicable for the combined ICBP-GWAS dis-

covery sample from the discovery stage meta-analysis association standard errors (σi for the

i-th signal), effective sample sizes (Ni for the i-th signal), and allele frequencies, using

V = meani
(
2pi(1− pi)×N × σ2

)
(1)

where the mean is over all signals (truely associated or not). We obtained VD = (11.25mmHg)2

for DBP and VS = (17.89mmHg)2 for SBP. (These are similar to the values obtained by tak-

ing weighted averages of residual SDs, after adjustment for medication and correction for

covariates, over all cohorts in the discovery dataset.)

Using the unbiased effect size estimates from Tables A.1 and A.2, we estimate that the

total variance explained by the 29 discovered signals (only) is 0.943% for DBP and 0.919%

for SBP.

A.4 Estimating power for discovered associations

It is important to take into account uncertainty about the true effect sizes of the discovered

signals, because discovery power is a non-linear function of effect size. A reasonable method

for estimating discovery power is to express power as a function of true effect size, and

integrate with respect to a probability distribution for true effect size. Here, for each signal

we integrate with respect to a joint distribution for the true effect sizes on DBP (βD) and

on SBP (βS) that is the Bayesian posterior distribution, assuming a locally uniform prior.

That is, we assume[
βD

βS

]
∼ N

([
β̂D

β̂S

]
,

[
s2
D rsDsS

rsDsS s2
S

])
(2)

where the parameters of the normal distribution are the mean and the variance-covariance

matrix. Here, β̂D and β̂S are the estimates (from Tables A.1 and A.2) excluding winners’

curse, sD and sS the corresponding standard errors, and r the phenotypic correlation between

DBP and SBP (after adjustment for covariates; this is asymptotically equal to the posterior

correlation).

Given true effect sizes βD and βS, the joint distribution of beta estimates in the ICBP-

GWAS discovery experiment is bivariate normal[
β̃D

β̃S

]
∼ N

([
βD

βS

]
,

[
σ2

D rσDσS

rσDσS σ2
S

])
(3)
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where σD and σS are the standard errors for the ICBP-GWAS discovery experiment (given

in Tables A.1 and A.2), which for small effect sizes depend only on the phenotypic variances

(after adjustment for covariates), effective sample size, and allele frequency, all of which we

assume are known in advance and do not depend on βD and βS.

Estimating discovery power by integrating with respect to a probability distribution for

the true effect sizes βD and βS is equivalent to assuming that the true effect sizes are ran-

dom. Marginal to the true effect sizes, the joint distribution of the estimates in a discovery

experiment is[
β̃D

β̃S

]
∼ N

([
β̂D

β̂S

]
,

[
s2
D + σ2

D r(sDsS + σDσS)

r(sDsS + σDσS) s2
S + σ2

S

])
(4)

and the joint distribution of the corresponding signed t-statistics (TD ≡ β̃D/σD and TS ≡
β̃S/σS) is[

TD

TS

]
∼ N

([
β̂D/σD

β̂S/σS

]
,

[
1 + s2

D/σ
2
D r(1 + sDsS/σDσS)

r(1 + sDsS/σDσS) 1 + s2
S/σ

2
S

])
(5)

Following Park et al. [2010], we assume that signals with truely non-zero effects will be

discovered by ICBP-GWAS if and only if they are selected for entry into (stage 1 of) the

ICBP-GWAS validation experiment, on the basis of (stage 0) ICBP-GWAS meta-analysis

results. Hence, discovery power is equivalent to probability of selection for (stage 1) valida-

tion. However, for the ICBP-GWAS study, selection for validation was not based on a strict

P -value threshold, but was based on P -value along with additional bioinformatic and litera-

ture information. Here, we make the simplying assumption that this additional information

was independent of the true association status for each signal, and therefore that selection

for validation can be modelled as a random selection process depending only on stage 0

association P -values for DBP and SBP. Specifically, we assume that selection depended on

the smaller of the assocation P -values for SBP and DBP, according to a binomial regression

model with probit link function and dependence on (|TD| ∧ |TS|), the greater of the absolute

values of the t-statistics for DBP and SBP. This regression model has the technically advan-

tageous feature that “random” selection (with probability of selection increasing for larger

absolute t-statistics) is well approximated by deterministic selection at a fixed threshold,

after the t-statistics have been perturbed by normal random “noise”. We assume that selec-

tion is made independently for each signal, so that this noise is independent across signals.

Because selection is a decision made on the basis of the test statistics for both DBP and

SBP, the noise is perfectly correlated for the DBP and SBP test statistics for a given signal.
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Specifically,

Pr (select) = Φ(d1 + d2(|TD| ∧ |TS|)) (6)

= Pr (Z ≤ d1 + d2(|TD| ∧ |TS|)) (7)

' Pr ((|TD + εZ| ≥ k) ∪ (|TS + εZ| ≥ k)) (8)

where d1 and d2 are coefficients in the regression model, Z is an independent standard

normal random variable, ε = −1/d2 measures the “noisiness” of the selection process, and

k = −d1/d2 is the “average” threshold for selection, and the approximation assumes ε is

small relative to k, so that e.g. |TD| + εZ ' |TD + εZ| for signals that have non-neglible

probability of selection. By retrospectively fitting this regression model to the discovery

data (TD and TS at stage 0 each independent SNP) and yes/no selection decisions made, we

estimate ε = −0.173 and k = 4.83, which we treat as fixed in the following.

The joint distribution is these “perturbed” t-statistics for SBP and DBP, perturbed by

the same random noise εZ, is bivariate normal[
TD + εZ

TS + εZ

]
∼ N

([
β̂D/σD

β̂S/σS

]
,

[
1 + s2

D/σ
2
D + ε2 r(1 + sDsS/σDσS) + ε2

r(1 + sDsS/σDσS) + ε2 1 + s2
S/σ

2
S + ε2

])
(9)

We calculate the discovery probability by integrating the bivariate normal density (9)

over the region satisfying the inequality in expression (8). We performed the integration

using the standard normal distribution function to obtain Pr (|TD + εZ| ≥ k), and to obtain

Pr (TS + εZ ≥ k | TD) over a grid of values for TD:

Pr (select) ' Pr ((|TD + εZ| ≥ k) ∪ (|TS + εZ| ≥ k)) (10)

' Pr (|TD + εZ| ≥ k)

+
∑
i

wi Pr (TD + εZ = zi) Pr (|TS + εZ| ≥ k | TD + εZ = zi) (11)

' Pr (|TS + εZ| ≥ k)

+
∑
i

wi Pr (TS + εZ = zi) Pr (|TD + εZ| ≥ k | TS + εZ = zi) (12)

where the zi are quadrature points on [−k, k] and wi are quadrature weights. The imple-

mentation and accuracy of the numerical integration were checked by numerically compar-

ing (11) and (12). The estimated power for each detected signal, and resulting estimate of

total number of signals, are given in Table A.3. The shape of the “visible tail” of the effect

size distributions can be visualised using a nonparametric density estimation method, as

shown in Figures A.1 and A.2.
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Table A.3: Estimates of discovery power for 29 associated signals, and resulting estimate of
total number of signals and total variance that would be explained.

index SNP signal power (Bi) estimated R2 (%) R2 (%)
signals (Mi) DBP SBP

rs17367504 MTHFR-NPPB 0.986 1 0.062 0.071
rs2932538 MOV10 0.084 11.9 0.012 0.012
rs13082711 SLC4A7 0.056 17.8 0.009 0.011
rs3774372 ULK4 0.313 3.2 0.027 0
rs419076 MECOM 0.239 4.2 0.017 0.02
rs1458038 FGF5 0.973 1 0.06 0.068
rs13107325 SLC39A8 0.743 1.3 0.051 0.035
rs13139571 GUCY1A3-GUCY1B3 0.071 14.2 0.013 0.008
rs1173771 NPR3-C5orf23 0.673 1.5 0.03 0.037
rs11953630 EBF1 0.424 2.4 0.029 0.019
rs1799945 HFE 0.691 1.4 0.038 0.033
rs805303 BAT2-BAT5 0.194 5.1 0.018 0.016
rs4373814 CACNB2(5’) 0.154 6.5 0.015 0.016
rs1813353 CACNB2(3’) 0.842 1.2 0.053 0.032
rs4590817 C10orf107 0.604 1.7 0.029 0.033
rs932764 PLCE1 0.529 1.9 0.017 0.034
rs11191548 CYP17A1-NT5C2 0.9 1.1 0.027 0.059
rs7129220 ADM 0.152 6.6 0.013 0.016
rs381815 PLEKHA7 0.51 2 0.024 0.028
rs633185 FLJ32810-TMEM133 0.775 1.3 0.039 0.039
rs17249754 ATP2B1 0.87 1.1 0.044 0.049
rs3184504 SH2B3 0.985 1 0.079 0.056
rs10850411 TBX5-TBX3 0.127 7.9 0.015 0.013
rs1378942 CYP1A1-ULK3 0.968 1 0.062 0.053
rs2521501 FES 0.473 2.1 0.037 0.051
rs17608766 GOSR2 0.114 8.8 0.001 0.017
rs12940887 ZNF652 0.282 3.5 0.022 0.018
rs1327235 JAG1 0.554 1.8 0.036 0.017
rs6015450 GNAS-EDN3 0.973 1 0.063 0.058
Total signals M =

∑
iMi 115.6

Total % variance explained R2 =
∑

iMiR
2
i 2.162 2.183
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Figure A.1: Distribution of effect sizes on the R2 scale. Solid lines show estimates using
a kernel density method applied to the unbiased R2 estimates for each signal
(from Table A.3, shown as ticks on the x-axis), with weights proportional to the
estimated number of signals (the Mi from Table A.3).
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Figure A.2: Distribution of effect sizes on the mmHg scale. Solid lines show estimates using
a kernel density method applied to the unbiased mmHg effect size estimates for
each signal (from Tables A.1 and A.2, shown as ticks on the x-axis), with weights
proportional to the estimated number of signals (the Mi from Table A.3).
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A.5 Bootstrap confidence interval

We followed Park et al. [2010] to obtain an approximate confidence interval on the estimate

M , by parametric bootstrapping. Since the estimated contribution to the total number

of signals for each row in Table A.3, Mi, is non-integer, for each bootstrap simulation we

simulated a discovery dataset as follows: For each i, the number of discovered signals Li was

simulated from a binomial distribution with parameters Bi and dMie. We then adjusted the

contribution to the total estimate M by an appropriate inverse factor, so that

Mboot =
∑
i

Li × 1/Bi ×Mi/dMie (13)

Using 10000 bootstrap simulations we obtained a bootstrap distribution for M with mean

115.8, 2.5-th percentile 63.8 and 97.5-th percentile 179.0, which suggests that (under the

parametric assumptions) unbiased estimation of M with 95% confidence interval 52–168.

The variance of the bootstrap distribution can in fact be calculated analytically and is

Var(Mboot) =
∑
i

M2
i /dMie (1−Bi)/Bi '

∑
i

Mi(1−Bi)/Bi (14)

which for our data is 876.6 and agrees closely with the observed variance 861.0. Inspection

of equation (14) shows that, like the estimate M itself, the the bootstrap variance is also

very sensitive to the number of signals with small Bi.

A.6 Prediction of novel discoveries

We predicted the number of signals that would be discovered as a function of sample size

(main text figure 2b) as follows: We modelled discovery power as a function of (effective)

discovery sample sizeN , assuming that standard errors (σi) in a discovery experiment depend

on N according to

σi =

√
V

2pi(1− pi)×N
(15)

where the phenotypic variance V was as estimated using Equation (1) and pi is the allele

frequency. For each observed signal in Table A.3, we assumed there were Mi similar true

signals that could potentially be discovered, with allele frequencies (pi) equal to those ob-

served, and effect size of each distributed as estimated from the winners’ curse free data

(Tables A.1 and A.2; Equation (2)). For each true signal assumed to exist, we estimated

discovery power B
(N)
i for each value of N using Equations (9)–(12), for a strict discovery
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P -value threshold P < α = 10−6 (corresponding to ε = 0 and k = Φ−1(1− α/2) = 4.89).

We assume each true signal is detected with independent probability B
(N)
i , and hence the

total variance in predicted number of discovered signals is a sum of Bernouilli variances.

We predicted the number of novel signals that would be discovered (excluding the 29 signals

already discovered) if further independent signals from our discovery experiment were to be

were followed up in a future large scale validation study. We calculated power for the ICBP-

GWAS stage 0 discovery experiment, but for a range of less stringent significance thresholds

α = 10−5, α = 10−4, α = 10−3 and α = 10−2 for the more significant of the test statistics

for DBP and SBP, assuming deterministic selection of signals for validation. That is, we

repeated the power calculations described above, but used ε = 0 and k = Φ−1(1− α/2), to

obtain power estimates B
(α)
i for each significance threshold α.

The expected number of novel discoveries (with effect size equal to that of the i-th observed

discovery) to be made in a validation experiment following up all signals with P ≤ α is then

given by

D
(α)
i = (Mi − 1)B

(α)
i (16)

The total expected number of novel discoveries for each α are given in Table A.4.

We note that, because power increases most slowly for the effect sizes with the largest

estimated numbers of signals, very large GWAS sample sizes would be needed to identify the

majority of the as-yet-undiscovered signals within the spectrum of effect sizes observed for

the signals that were discovered by ICBP-GWAS. For example (as shown in the main text

Figure 2b), in an enlarged GWAS with N = 150, 000, we expect (76 − 29)/(115.6 − 29) =

54% of as-yet-undiscovered signals to reach P < 10−6. For the same reason (as shown in

Table A.4), it would be necessary to follow up an extremely large number of signals (e.g.

all independent signals with discovery P < 0.01 in ICBP-GWAS) in a large independent

validation experiment, in order to discover 68.3/(115.6 − 29) = 79% of as-yet-undiscovered

signals.

A.7 Robustness

We assumed r = 0.6 for all results presented. Assuming r = 0.4 or r = 0.8 made relatively

little difference to the overall estimate (M = 113 and M = 120 respectively).

We explored the effect of not taking into account uncertainty in the true effect sizes β,

which results in smaller estimates of discovery power B for signals with small B. Assuming

no uncertainty (sD = 0 and sS = 0 for all signals) resulted in a substantially larger estimate

of M = 202, illustrating the importance of properly taking into account uncertainty in effect
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Table A.4: Discovery power B
(α)
i for the ICBP-GWAS discovery experiment at a range of

less stringent significance thresholds α. We estimated the total number of truely
associated novel signals that would be discovered if all signals reaching these
thresholds were taken forward into sufficiently large validation experiments.

index SNP estimated α = 10−2 α = 10−3 α = 10−4 α = 10−5

signals (Mi) B
(α)
i D

(α)
i B

(α)
i D

(α)
i B

(α)
i D

(α)
i B

(α)
i D

(α)
i

rs17367504 1 1 0 1 0 0.999 0 0.995 0
rs2932538 11.9 0.752 8 0.506 5 0.295 2.5 0.154 0.8
rs13082711 17.8 0.676 11 0.418 6.4 0.225 3 0.109 0.9
rs3774372 3.2 0.92 1.9 0.787 1.5 0.616 1 0.442 0.4
rs419076 4.2 0.911 2.8 0.754 2.1 0.554 1.3 0.366 0.5
rs1458038 1 1 0 1 0 0.998 0 0.99 0
rs13107325 1.3 0.996 0.3 0.978 0.3 0.931 0.3 0.846 0.1
rs13139571 14.2 0.703 9 0.454 5.4 0.256 2.6 0.131 0.9
rs1173771 1.5 0.993 0.5 0.966 0.4 0.901 0.3 0.794 0.2
rs11953630 2.4 0.964 1.3 0.876 1.1 0.735 0.7 0.566 0.3
rs1799945 1.4 0.993 0.4 0.967 0.4 0.906 0.3 0.805 0.2
rs805303 5.1 0.889 3.6 0.709 2.6 0.497 1.6 0.311 0.6
rs4373814 6.5 0.849 4.5 0.645 3.2 0.429 1.8 0.255 0.7
rs1813353 1.2 0.998 0.2 0.99 0.2 0.965 0.1 0.913 0.1
rs4590817 1.7 0.989 0.6 0.949 0.6 0.864 0.4 0.736 0.2
rs932764 1.9 0.978 0.8 0.917 0.7 0.808 0.5 0.663 0.3
rs11191548 1.1 1 0.1 0.996 0.1 0.984 0.1 0.952 0.1
rs7129220 6.6 0.845 4.6 0.639 3.2 0.424 1.8 0.252 0.7
rs381815 2 0.974 0.9 0.909 0.8 0.794 0.6 0.645 0.3
rs633185 1.3 0.998 0.3 0.985 0.3 0.947 0.2 0.872 0.1
rs17249754 1.1 0.999 0.1 0.993 0.1 0.974 0.1 0.932 0.1
rs3184504 1 1 0 1 0 0.999 0 0.995 0
rs10850411 7.9 0.827 5.5 0.606 3.8 0.386 2 0.219 0.7
rs1378942 1 1 0 1 0 0.997 0 0.989 0
rs2521501 2.1 0.98 1.1 0.915 0.9 0.79 0.7 0.623 0.3
rs17608766 8.8 0.726 5.4 0.507 3.4 0.321 1.8 0.188 0.6
rs12940887 3.5 0.94 2.3 0.807 1.9 0.617 1.2 0.422 0.5
rs1327235 1.8 0.981 0.8 0.926 0.7 0.824 0.5 0.686 0.2
rs6015450 1 1 0 1 0 0.998 0 0.99 0
Total 115.6 68.3 50.2 33.6 21.0

page A.14 (Appendix A)



sizes to avoid upward bias in M .
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